Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • purification  (1)
  • shear stress  (1)
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Adsorption 3 (1997), S. 41-54 
    ISSN: 1572-8757
    Schlagwort(e): liquid crystals ; moving bed system ; simulation ; purification
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Chemie und Pharmazie , Physik , Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
    Notizen: Abstract We investigate convective-diffusive transport of a solute through a medium with properties that can be externally modulated in space and time. In particular, we focus on the effect of a front—a sharp transition in the convective velocity (v) and diffusivity (D)—on the evolution of the solute concentration profile. Numerical results show that by suitably moving the front during the process an anti-dispersive effect may be realized, in which the solute accumulates in a thin region close to the moving boundary. Our computations take into account the realistic case of a front having a small but finite thickness, and we find that the width of the concentration profile scales as $$\left( {1/\sqrt {Pe} } \right)$$ , where Pe is the Péclet number. This is in sharp contrast to the 1/Pe scaling observed for the ideal case of the singular front assumed in previous work. The effect of the thickness of the front and the magnitude of the drop inv andD, on the solute concentration profile has also been studied. These results are relevant in order to implement and optimize protocols that apply an externally controlled moving boundary for the purpose of separation. We also present experimental results characterizing solute transport across a stationary front, expected to display many features needed in a model for moving fronts. The concentration profile of electrophoretically mobile BSA-FITC within the boundary layer at a polyacrylamde gel-buffer interface were visualized by epifluorescence microscopy. Measured boundary layer thickness exceeded that predicted for even a finite interface, indicating that the length scale associated with real boundaries is relevant to the modeling problem.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 38 (1991), S. 588-602 
    ISSN: 0006-3592
    Schlagwort(e): endothelium ; genetic expression ; protein synthesis ; shear stress ; signal transduction ; Chemistry ; Biochemistry and Biotechnology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
    Notizen: Mammalian cells responds to physical forces by altering their growth rate, morphology, metabolism, and genetic expression. We have studied the mechanism by which these cells detect the presence of mechanical stress and convert this force into intracellular signals. As our model systems, we have studied cultured human endothelial cells, which line the blood vessels and forms the interface between the blood and the vessel wall. These cell responds within minutes to the initiation of flow by increasing their arachidonic acid metabolism and increasing the level of the intracellular second messengers inositol trisphosphate and calcium ion concentration. With continued exposure to arterial levels of wall shear stress for up to 24 h, endothelial cells increase the expression of tissue plasminogen activator (tPA) and tPA messenger RNA (mRNA) and decrease the expression of endothelin peptide and endothelin mRNA. Since the initiation of flow also causes enhanced convective mass transfer to the endothelial cell monolayer, we have investigated the role of enhanced convection of adenosine trisphosphate (ATP) to the cell surface in eliciting a cellular response by monitoring cytosolic calcium concentrations on the single cell level and by computing the concentration profile of ATP in a parallel-plate flow geometry. Our result demonstrate that endothelial cells respond in very specific ways to the initiation of flow and that mass transfer and fluid shear stress can both play a role in the modulation of intracellular signal transduction and metabolism.
    Zusätzliches Material: 9 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...