Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    International journal of fracture 102 (2000), S. 371-392 
    ISSN: 1573-2673
    Keywords: Elasticity ; body force method ; singular integral equations ; numerical analysis ; three-dimensional analysis ; stress concentration factor ; ellipsoidal inclusion.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract In this paper the interaction among a row of N ellipsoidal inclusions of revolution is considered. Inclusions in a body under both (A) asymmetric uniaxial tension in the x-direction and (B) axisymmetric uniaxial tension in the z-direction are treated in terms of singular integral equations resulting from the body force method. These problems are formulated as a system of singular integral equations with Cauchy-type or logarithmic-type singularities, where unknowns are densities of body forces distributed in the r,θ,z directions. In order to satisfy the boundary conditions along the ellipsoidal boundaries, the unknown functions are approximated by a linear combination of fundamental density functions and polynomials. The present method is found to yield rapidly converging numerical results for interface stresses. When the elastic ratio E 1⇒E I/E M〉1, the primary feature of the interaction is a large compressive or tensile stress σn on the interface θ=0. When E 1⇒E I/E M〈1, a large tensile stress σθ or σt on the interface θ=1/2π is of interest. If the spacing b/d and the elastic ratio E I/E M are fixed, the interaction effects are dominant when the shape ratio a/b is large. For any fixed shape and spacing of inclusions, the maximum stress is shown to be linear with the reciprocal of the squared number of inclusions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    International journal of fracture 106 (2000), S. 81-93 
    ISSN: 1573-2673
    Keywords: Body force method ; elasticity ; elliptical inclusion ; interaction effect ; longitudinal shear ; numerical analysis ; singular integral equation stress concentration.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract This paper deals with an interaction problem of arbitrarily distributed elliptical inclusions under longitudinal shear loading. The problem is formulated as a system of singular integral equations with Cauchy-type or logarithmic-type singularities, where unknown functions are the densities of body forces distributed in the longitudinal directions of infinite bodies having the same elastic constants as those of the matrix and inclusions. In order to satisfy the boundary conditions along the elliptical inclusions, four kinds of fundamental density functions are introduced in a similar way of previous papers treating plane stress problems. Then the body force densities are approximated by a linear combination of those fundamental density functions and polynomials. In the analysis, elastic constants of matrix and inclusion are varied systematically; then the magnitude and position of the maximum stress are shown in tables and the stress distributions along the boundary are shown in figures. For any fixed shape, size and elastic constant of inclusions, the relationships between number of inclusions and maximum stress are investigated for several arrangements.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    International journal of fracture 100 (1999), S. 207-225 
    ISSN: 1573-2673
    Keywords: Semi-elliptical crack ; inclined crack ; stress intensity factor ; crack opening displacement ; singular integral equation ; body force method.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract In this paper, a singular integral equation method is applied to calculate the stress intensity factor along crack front of a 3D inclined semi-elliptical surface crack in a semi-infinite body under tension. The stress field induced by displacement discontinuities in a semi-infinite body is used as the fundamental solution. Then, the problem is formulated as a system of integral equations with singularities of the form r −3. In the numerical calculation, the unknown body force doublets are approximated by the product of fundamental density functions and polynomials. The results show that the present method yields smooth variations of mixed modes stress intensity factors along the crack front accurately for various geometrical conditions. The effects of inclination angle, elliptical shape, and Poisson's ratio are considered in the analysis. Crack mouth opening displacements are shown in figures to predict the crack depth and inclination angle. When the inclination angle is 60 degree, the mode I stress intensity factor F I has negative value in the limited region near free surface. Therefore, the actual crack surface seems to contact each other near the surface.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-2673
    Keywords: Stress intensity factor ; angular corner ; diamond-shaped inclusion ; singular integral equation ; body force method ; interface ; composite
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract This paper deals with a row of equally spaced equal diamond-shaped inclusions with angular corners under various loading conditions. The problem is formulated as a system of singular integral equations with Cauchy-type singularities, where the unknown functions are the densities of body forces distributed in infinite plates having the same elastic constants of the matrix and inclusions. In order to analyze the problems accurately, the unknown functions of the body force densities are expressed as a linear combination of two types of fundamental density functions and power series, where the fundamental density functions are chosen to represent the symmetric stress singularity of $$1/r^{1 - \lambda _1 } $$ and the skew-symmetric stress singularity of $$1/r^{1 - \lambda _2 } $$ . Then, newly defined stress intensity factors for angular corners are systematically calculated for various shapes, spacings, elastic constants and numbers of the diamond-shaped inclusions in a plate subjected to uniaxial tension, biaxial tension and in-plane shear. For all types of diamond-shaped inclusions, the stress intensity factor is shown to be linearly related to the reciprocal of the number of diamond-shaped inclusions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...