Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 224 (2000), S. 99-113 
    ISSN: 1573-5036
    Keywords: CO2 ; nitrogen fertilization ; soils ; nutrients ; Pinus ponderosa
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effects of six years treatment with elevated [CO2] (350, 525, and 700 μl l-1) and nitrogen (N) (0, 10, and 20 g N m-2 yr-1) on soils, soil solution, and CO2 efflux in an open-top chamber study with ponderosa pine (Pinus ponderosa Laws.) are described. The clearest [CO2] effect was in year 6, when a pattern of lower soil N concentration and higher C/N ratio with elevated [CO2] emerged. Statistically significant effects of elevated [CO2] on soil total C, extractable P, exchangeable Mg2+, exchangeable Ca2+, base saturation, and soil solution HCO3 - and NO3 - were also found in various treatment combinations and at various times; however, these effects were inconsistent among treatments and years, and in many cases (P, Mg2+, Ca2+, base saturation) reflected pre-treatment differences. The use of homogenized buried soil bags did not improve the power to detect changes in soil C and N or help resolve the inconsistencies in soil C patterns. Nitrogen fertilization had the expected negative effects on exchangeable Ca2+, K+, and Mg2+ in year 6, presumably because of increased NO3 - leaching, but had no consistent effect on soil C, N, or extractable P.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...