Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • steady state  (2)
  • Key words Elasticity, body force method, singular integral equation, numerical analysis, stress concentration factor, ellipsoidal inclusion  (1)
Material
Years
Keywords
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archive of applied mechanics 70 (2000), S. 612-624 
    ISSN: 1432-0681
    Keywords: Key words Elasticity, body force method, singular integral equation, numerical analysis, stress concentration factor, ellipsoidal inclusion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Summary  This paper deals with interaction problems of elliptical and ellipsoidal inclusions under bending, using singular integral equations of the body force method. The problems are formulated as a system of singular integral equations with Cauchy-type or logarithmic-type singularities, where unknown functions are densities of body forces distributed in the x,y and r,θ,z directions in infinite bodies having the same elastic constants as those of the matrix and inclusions. In order to satisfy the boundary conditions along the elliptical and the ellipsoidal boundaries, the unknown functions are approximated by a linear combination of fundamental density functions and polynomials. The present method is found to yield the exact solutions for a single elliptical or spherical inclusion under a bending stress field. It yields rapidly converging numerical results for interface stresses in the interaction of inclusions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archive of applied mechanics 66 (1996), S. 581-589 
    ISSN: 1432-0681
    Keywords: functionally gradient material ; thermal stress ; steady state ; optimum design
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Summary Steady thermal stresses in a plate made of a functionally gradient material (FGM) are analyzed theoretically and calculated numerically. An FGM plate composed of PSZ and Ti-6Al-4V is examined, and the temperature dependence of the material properties is considered. A local safety factor is used for evaluation of the FGM's strength. It is assumed that top and bottom surfaces of the plate are heated and kept at constant thermal boundary conditions. The pairs of the surface temperatures, for which the minimum local safety factor can be of more than one, are obtained as available temperature regions. The temperature dependence of the material properties diminishes, available temperature region as compared with that for an FGM plate without it. The available temperature region of the FGM plate is wider than that of the two-layered plate, especially for the surface temperatures which are high at the ceramic surface and low at the metal side. The influence of different mechanical boundary conditions is examined, and available temperature regions are found to be different, depending on the mechanical boundary conditions. The influence of the intermediate composition on the thermal stress reduction is also investigated in detail for the surface temperatures which are kept at 1300 K at the ceramic surface and 300K at the metal side. Appropriate intermediate composition of the FGM plate can yield the local safety factor of one or more for the four mechanical boundary conditions at once. For the two-layered plate there does not exist, however, any appropriate pair of metal and ceramic thicknesses which would yield the local safety factor of one or more for the four mechanical boundary conditions at once. The influence of the intermediate composition on the maximization of the minimum stress ratio depends on the mechanical boundary conditions. Finally, the optimal FGM plates are determined.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Archive of applied mechanics 66 (1996), S. 581-589 
    ISSN: 1432-0681
    Keywords: Key words functionally gradient material ; thermal stress ; steady state ; optimum design
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Summary  Steady thermal stresses in a plate made of a functionally gradient material (FGM) are analyzed theoretically and calculated numerically. An FGM plate composed of PSZ and Ti-6Al-4V is examined, and the temperature dependence of the material properties is considered. A local safety factor is used for evaluation of the FGM’s strength. It is assumed that top and bottom surfaces of the plate are heated and kept at constant thermal boundary conditions. The pairs of the surface temperatures, for which the minimum local safety factor can be of more than one, are obtained as available temperature regions. The temperature dependence of the material properties diminishes, available temperature region as compared with that for an FGM plate without it. The available temperature region of the FGM plate is wider than that of the two-layered plate, especially for the surface temperatures which are high at the ceramic surface and low at the metal side. The influence of different mechanical boundary conditions is examined, and available temperature regions are found to be different, depending on the mechanical boundary conditions. The influence of the intermediate composition on the thermal stress reduction is also investigated in detail for the surface temperatures which are kept at 1300 K at the ceramic surface and 300K at the metal side. Appropriate intermediate composition of the FGM plate can yield the local safety factor of one or more for the four mechanical boundary conditions at once. For the two-layered plate there does not exist, however, any appropriate pair of metal and ceramic thicknesses which would yield the local safety factor of one or more for the four mechanical boundary conditions at once. The influence of the intermediate composition on the maximization of the minimum stress ratio depends on the mechanical boundary conditions. Finally, the optimal FGM plates are determined.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...