Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 30 (1992), S. 879-885 
    ISSN: 0887-624X
    Keywords: polyisocyanates ; polymer electrolytes ; metallic cation conducting polymers ; steric hindered phenols ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: 2,6-Di-t-butylphenol and oligo(ethylene oxide) bound covalently to polyisocyanate were synthesized and characterized. The ionic conductivities of their Li, Na, and K phenolates were studied at various temperatures. The conductivities were in the range of 10-7-10-5 S/cm at 30°C. The conductivity of Na and K salts was approximately 102 greater than that of the Li salts. The t-butyl groups serve to dissociate K and Na ions from the phenoxide. The cations, therefore, are more mobile as a result increasing the conductivity. The temperature dependence of ionic conductivity suggests that the migration of ions is controlled by segmental motion of the polymer, shown by linear curves obtained in Vogel-Tammann-Fulchere plots. The polyisocyanate backbone is a rather stiff structure, however, a flexible oligo(ethylene oxide) side chain forms complexes with metal ion. Since the ion transport is associated with the local movement of polymer segments, the rigidity of the polymer backbone does not have much influence on the ion mobility.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...