Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-9788
    Keywords: acetohydroxyacid synthase ; cotton ; Gossypium hirsutum ; herbicide resistance ; imidazolinone ; sulfonylurea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Herbicide-resistant transgenic cotton (Gossypium hirsutum L.) plants carrying mutant forms of a native acetohydroxyacid synthase (AHAS) gene have been obtained by Agrobacterium and biolistic transformation. The native gene, A19, was mutated in vitro to create amino acid substitutions at residue 563 or residue 642 of the precursor polypeptide. Transformation with the mutated forms of the A19 gene produced resistance to imidazolinone and sulfonylurea herbicides (563 substitution), or imidazolinones only (642 substitution). The herbicide-resistant phenotype of transformants was also manifested in their in vitro AHAS activity. Seedling explants of both Coker and Acala cotton varieties were transformed with the mutated forms of the A19 gene using Agrobacterium. In these experiments, hundreds of transformation events were obtained with the Coker varieties, while the Acala varieties were transformed with an efficiency about one-tenth that of Coker. Herbicide-resistant Coker and Acala plants were regenerated from a subset of transformation events. Embryonic cell suspension cultures of both Coker and Acala varieties were biolistically transformed at high frequencies using cloned cotton DNA fragments carrying the mutated forms of the A19 gene. In these transformation experiments the mutated A19 gene served as the selectable marker, and the efficiency of selection was comparable to that obtained with the NPT II gene marker of vector Bin 19. Using this method, transgenic Acala plants resistant to imidazolinone herbicides were obtained. Southern blot analyses indicated the presence of two copies of the mutated A19 transgene in one of the biolistically transformed R0 plants, and a single copy in one of the R0 plants transformed with Agrobacterium. As expected. progeny seedlings derived from outcrosses involving the R0 plant transformed with Agrobacterium segregated in a 1:1 ratio with respect to herbicide resistance. The resistant progeny grew normally after irrigation with 175 μg/l of the imidazolinone herbicide imazaquin, which is five times the field application rate. In contrast, untransformed sibling plants were severely stunted.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...