Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    International journal of thermophysics 17 (1996), S. 713-721 
    ISSN: 1572-9567
    Schlagwort(e): impulse transducer ; laser heating ; laser-produced plasma ; molten metal ; RF levitator-heater ; thermal diffusivity
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Physik
    Notizen: Abstract A high-power pulsed laser excitation of a material surface generates a well-separated sequence of plasma, fluid flow, and acoustic events. When the movement of the surface due to evaporation by laser heating is kept in pace with the thermal diffusion front, the ablative mass loss from a solid surface becomes strongly correlated with the thermal diffusivity of the target matter. The other thermophysiocal properties which figure in this correlation are the mass density, heat of formation, and molecular weight. The functional relationship, which is given in this text for the first time, can be exploited to measure the thertnophysical properties. We have now extended such an approach to measurement of the thermal diffusivity of molten specimens by developing a new instrumentation for determining the ablative mass loss due to a single laser pulse. This has been accomplished by combining a facility for controlled generation of a molten specimen and a novel transducer for real-time measurement of the impulse imparted to the molten target by a laser-produced plasma plume, The transducer design, calibration, signal recovery, and method of extracting the mass loss per laser excitation are detailed by comparing the results for metallic specimens in the solid and molten state.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    International journal of thermophysics 17 (1996), S. 1125-1136 
    ISSN: 1572-9567
    Schlagwort(e): impulse transducer ; laser-produced plasmas ; levitation-assisted ; molten metal source ; molten metals ; RF heating ; SS304 ; SS316 ; thermal diffusivity
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Physik
    Notizen: Abstract We have shown that a laser-produced plasma plume which is representative in elemental composition of the condensed phase target can be reproducibly generated if the movement of the surface due to evaporation is kept in pace with the thermal diffusion front propagating into the bulk. The resulting mass loss is then strongly controlled by the thermal diffusivity of the target matter, and this relationship has been exploited to measure the thermal diffusivity of metallic alloys. We have developed a novel RF Ievitator-heater as a contamination-free molten metal source to be used as a target for LPP plume generation. In order to determine the mass loss due to LPP excitation, a new high-sensitivity transducer has been constructed for measurement of the resulting impulse imparted on the specimen. The impulse transducer is built onto the specimen holder within the levitation-assisted molten metal source. The LPP method has been fully exercised for measurement of the thermal diffusivity of a molten specimen relative to the value for its room temperature solid. The results for SS304 and SS316 are presented, together with a critique of the results. A numerical modeling of the specimen heating in the molten metal source and the physical basis of the new method are also presented.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...