Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-9368
    Keywords: Solanum tuberosum ; genetic modification ; transformation ; gene transfer ; genetic isolation ; risk assessment
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Information on the extent of transgene dispersal by pollen to adjacent potato plots and to related weed species is an important requisite for risk assessment; a procedure followed before novel transgenic plants are evaluated under field conditions. The purpose of the investigation was to determine the frequency of cross-pollination between potato (Solanum tuberosum) plants at different distances, using a kanamycin resistnace transgene (nptII) as a selectable marker. All potato plants were from the variety Désirée. Non-transgenic potato plants, used as potential recipients of transgene-containing pollen, were planted in 12 sub-plots, at distances of 0–20 m from the nearest transgenic potato plants. Seeds harvested from the non-transgenic plants were screened for resistance to kanamycin, and molecular methods were used to confirm that resistant progeny contained thenptII gene. Where transgenic and non-transgenic potato plants were in alternate rows (leaves touching), 24% of seedlings from the non-transgenic parent plants were kanamycin-resistant. Comparable seedlings from plants at up to 3 m distance had a resistance frequency of 2%, at 10 m the frequency was 0.017% and at 20 m no resistant progeny were observed. Plants of the weed speciesS. dulcamara andS. nigrum were also planted close to the transgenic potatoes to test for evidence of hybridization, and no kanamycin-resistant seedlings were observed among progeny fromS. dulcamara andS. nigrum. This investigation provided evidence that the extent of gene dispersal from transgenic potatoes to non-transgenic potatoes falls markedly with increasing distance, and is negligible at 10 m. There was, also, no evidence of transgene movement from potato toS. dulcamara andS. nigrum under field conditions. These data will be valuable in defining genetic isolation procedures for the early field evaluation and the use of novel transgenic potato genotypes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5060
    Keywords: Agrobacterium ; plant regeneration ; potato ; Solanum tuberosum ; tissue culture ; transformation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary To provide a truly genotype-independent transformation system, it is necessary to be able to transform a wide range of potato genotypes. The ability to regenerate shoots in vitro was determined for 34 potato varieties using tuber disc explants. Following a culture regime used extensively in previous studies with the variety Desiree, half of the varieties could be regenerated from tuber discs and half could not. From a sample of varieties that could be regenerated from tuber discs, all but one variety gave transgenic plants. Twelve varieties were evaluated for the capacity to regenerate shoots from leaf and internode explants excised from in vitro grown plants. All of the varieties tested regenerated adventitious shoots. Leaf and internode explants from 5 varieties were subsequently used for transformation, and transgenic plants were produced from two potato varieties that did not give transgenic plants from tuber disc explants. Some varieties could not be transformed by either method, and will require modification of the in vitro regeneration and transformation system to be successful.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...