Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1424
    Keywords: nerve fibers ; membrane ; transport ; phosphate ; calcium ; Ca ionophore ; Na/Ca exchange
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Phosphate efflux was measured as the fractional rate of loss of radioactivity from desheathed rabbit vagus nerves after loading with radiophosphate. The effects of strategies designed to increase intracellular calcium were investigated. At the same time, the exchangeable calcium content was measured using45Ca. Application of calcium ionophore A23187 increased phosphate efflux in the presence of external calcium in parallel with an increase in calcium content. In the absence of external calcium, there was only a late, small increase in phosphate efflux. For nerves already treated with the calcium ionophore, the phosphate efflux was sensitive to small changes in external calcium, in the range 0.2 to 2mm calcium, whereas similar increases in calcium in absence of ionophore gave much smaller increases in phosphate efflux. Removal of external sodium (choline substitution) produced an initial increase in phosphate efflux followed by a fall. The initial increase in phosphate efflux was much larger in the presence of calcium, than in its absence. The difference was again paralleled by an increase in calcium content of the preparation, thought to be due to inhibition of Na/Ca exchange by removal of external sodium. Measurements of ATP content and ATP, ADP, phosphate and creatine phosphate ratios did not indicate significant metabolic changes when the calcium content was increased. Stimulation of phosphate efflux by an increase in intracellular calcium may be due to stimulation of phospholipid metabolism. Alternatively, it is suggested that stimulation of phosphate efflux is associated with the stimulation of calcium efflux, possibly by cotransport of calcium and phosphate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 65 (1982), S. 125-130 
    ISSN: 1432-1424
    Keywords: nerve fibers ; membrane ; transport ; phosphate ; calcium ; lanthanum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Phosphate efflux was measured as the fractional rate of loss of radioactivity from rabbit vagus loaded with radiophosphate. The effects of changes in extracellular calcium and of lanthanum have been investigated. In Locke solution with normal, 0.9mm, calcium and without phosphate, the fractional rate of loss was 1.62×10−3 min−1 at 120 min after the beginning of the washing period and fell slowly (9% hr−1) during washing from 2 to 6 hr. Addition of calcium to the Locke solution produced a transient increase followed by a reversible maintained increase in phosphate efflux. The latter was 40 and 75% above efflux in normal calcium for 20 and 50mm calcium, respectively. Removal of calcium, with or without addition of EGTA, produced only a transient increase in phosphate efflux, with no subsequent maintained change. Addition of low concentrations of lanthanum produced a reversible inhibition of phosphate efflux. Half-maximal inhibition was at 3.5 μm lanthanum and appeared to be due to binding of lanthanum to more than one, probably two, sites. Measurements of inhibition by lanthanum at different calcium concentrations did not indicate any competition between calcium and lanthanum. It is suggested that at least a part of phosphate efflux depends on internal calcium and that lanthanum acts by preventing release of phosphate from the phosphate transport mechanism.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...