Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • stratified turbulence  (1)
  • turbulent shear layer  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Flow, turbulence and combustion 63 (2000), S. 343-360 
    ISSN: 1573-1987
    Keywords: stratified turbulence ; environmental mixing ; geophysical flows
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Direct numerical simulations of homogeneous turbulence in stably stratified shear flow have been performed to aid the understanding of turbulence and turbulent mixing in geophysical flow. Two cases are compared. In the first case, which has been studied in the past, the mean velocity has vertical shear and the mean density is vertically stably stratified. In the second case, which has not been studied systematically before, the mean velocity has horizontal shear and the mean density is again vertically stably stratified. The critical value of the gradient Richardson number, for which a constant turbulence level is obtained, is found to be an order of magnitude larger in the horizontal shear case. The turbulent transport coefficients of momentum and vertical mass transfer are also an order of magnitude larger in the horizontal shear case. The anisotropy of the turbulence intensities are found to be in the range expected of flows with mean shear with no major qualitative change in the range of Richardson numbers studied here. However, the anisotropy of the turbulent dissipation rate is strongly affected by stratification with the vertical component dominating the others.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of engineering mathematics 32 (1997), S. 217-236 
    ISSN: 1573-2703
    Keywords: turbulent shear layer ; large-eddy simulation ; subgrid-scale models ; acoustic analogy ; Lighthill's analogy.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics , Technology
    Notes: Abstract The effect of the small scales on the source term in Lighthill's acoustic analogy is investigated, with the objective of determining the accuracy of large-eddy simulations when applied to studies of flow-generated sound. The distribution of the turbulent quadrupole is predicted accurately, if models that take into account the trace of the SGS stresses are used. Its spatial distribution is also correct, indicating that the low-wave-number (or frequency) part of the sound spectrum can be predicted well by LES. Filtering, however, removes the small-scale fluctuations that contribute significantly to the higher derivatives in space and time of Lighthill's stress tensor T ij. The rms fluctuations of the filtered derivatives are substantially lower than those of the unfiltered quantities. The small scales, however, are not strongly correlated, and are not expected to contribute significantly to the far-field sound; separate modeling of the subgrid-scale density fluctuations might, however, be required in some configurations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...