Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • vesicular transport pathways  (1)
  • 1
    Digitale Medien
    Digitale Medien
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 32 (1986), S. 235-245 
    ISSN: 0730-2312
    Schlagwort(e): monesin ; vesicular transport pathways ; liver perfusion ; asialoorosomucoid ; Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Chemie und Pharmazie , Medizin
    Notizen: In the rat hepatoctye, the internalization and degradation of asialoglycoproteins and the secretion of plasma and biliary proteins require specific intracellular sorting of vesicles. To aid in the biochemical characterization of these different vesicular pathways, we examined the effects of the ionophore monensin on the uptake and degradation of 125I-asialoorosomucoid (ASOR) and on the secretion of plasma and biliary proteins by the in situ perfused rat liver. In control livers, 77% of injected 125I-ASOR was extracted on first pass; 93% of the extracted radioactivity was released back into the circulation (totally degraded and some intact ASOR was found); and approximately 2% was recovered in the bile, some of which was intact. Monensin treatment decreased first pass uptake of 125I-ASOR to 57% and abruptly blocked the release of radioactivity into the perfusate and the bile. When hepatic proteins were biosynthetically labeled with 3H-leucine, monensin treatment dramatically reduced and delayed the secretion of newly synthesized proteins into both the perfusate and the bile. In contrast with control livers, in which secretion of protein into the perfusate preceded secretion of protein into the bile, TCA-precipitable 3H-protein appeared in bile about 20 min before TCA-precipitable 3H-protein appeared in the perfusate in monensin-treated livers. Thus, monensin treatment in the perfused liver blocked the degradation of asialoglycoproteins and inhibited the secretion of plasma proteins but had less effect on biliary protein secretion. These data document physiologic effects of monensin in an intact organ and suggest that biochemical distinctions between different vesicular pathways exist in the rat hepatocyte.
    Zusätzliches Material: 4 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...