Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Planta 192 (1994), S. 537-544 
    ISSN: 1432-2048
    Keywords: Adenylate energy charge ; ATPase activity ; Energy dissipation ; Gossypium ; Photosynthesis ; Stress (low temperature, low CO2) ; xanthophyll cycle
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The relationships among the leaf adenylate energy charge, the xanthophyll-cycle components, and photosystem II (PSII) fluorescence quenching were determined in leaves of cotton (Gossypium hirsutum L. cv. Acala) under different leaf temperatures and different intercellular CO2 concentrations (Ci). Attenuating the rate of photosynthesis by lowering the Ci at a given temperature and photon flux density increased the concentration of high-energy adenylate phosphate bonds (adenylate energy charge) in the cell by restricting ATP consumption (A.M. Gilmore, O. Björkman 1994, Planta 192, 526–536). In this study we show that decreases in photosynthesis and increases in the adenylate energy charge at steady state were both correlated with decreases in PSII photo-chemical efficiency as determined by chlorophyll fluorescence analysis. Attenuating photosynthesis by decreasing Ci also stimulated violaxanthin-de-epoxidation-dependent nonradiative dissipation (NRD) of excess energy in PSII, measured by nonphotochemical fluorescence quenching. However, high NRD levels, which indicate a large trans-thylakoid proton gradient, were not dependent on a high adenylate energy charge, especially at low temperatures. Moreover, dithiothreitol at concentrations sufficient to fully inhibit violaxanthin de-epoxidation and strongly inhibit NRD, affected neither the increased adenylate energy charge nor the decreased PSII photo-chemical efficiency that result from inhibiting photosynthesis. The build-up of a high adenylate energy charge in the light that took place at low Ci and low temperatures was accompanied by a slowing of the relaxation of non-photochemical fluorescence quenching after darkening. This slowly relaxing component of nonphotochemical quenching was also correlated with a sustained high adenylate energy charge in the dark. These results indicate that hydrolysis of ATP that accumulated in the light may acidify the lumen and thus sustain the level of NRD for extended periods after darkening the leaf. Hence, sustained nonphotochemical quenching often observed in leaves subjected to stress, rather than being indicative of photoinhibitory damage, apparently reflects the continued operation of NRD, a photoprotective process.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5079
    Keywords: non-radiative energy dissipation ; Stern-Volmer analysis ; xanthophyll cycle ; photoprotection
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Zeaxanthin has been correlated with high-energy non-photochemical fluorescence quenching but whether antheraxanthin, the intermediate in the pathway from violaxanthin to zeaxanthin, also relates to quenching is unknown. The relationships of zeaxanthin, antheraxanthin and ΔpH to fluorescence quenching were examined in chloroplasts ofPisum sativum L. cv. Oregon andLactuca sativa L. cv. Romaine. Data matrices as five levels of violaxanthin de-epoxidation against five levels of light-induced lumen-proton concentrations were obtained for both species. The matrices included high levels of antheraxanthin as well as lumen-proton concentrations induced by subsaturating to saturation light levels. Analyses of the matrices by simple linear and multiple regression showed that quenching is predicted by models where the major independent variable is the product of lumen acidity and de-epoxidized xanthophylls, the latter as the sum of zeaxanthin and antheraxanthin. The interactions of lumen acidity and xanthophyll concentration are shown in three-dimensional plots of the best-fit multiple regression models. Antheraxanthin apparently contributes to quenching as effectively as zeaxanthin and explains quenching previously not accounted for by zeaxanthin. Hence, we propose that all high-energy dependent quenching is xanthophyll dependent. Quenching requires a threshold lumen pH that varies with xanthophyll composition. After the threshold, quenching is linear with lumen acidity or xanthophyll composition.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...