Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    s.l. : American Chemical Society
    Journal of the American Chemical Society 79 (1957), S. 12-20 
    ISSN: 1520-5126
    Quelle: ACS Legacy Archives
    Thema: Chemie und Pharmazie
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    s.l. : American Chemical Society
    Journal of the American Chemical Society 73 (1951), S. 1610-1611 
    ISSN: 1520-5126
    Quelle: ACS Legacy Archives
    Thema: Chemie und Pharmazie
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    s.l. : American Chemical Society
    Inorganic chemistry 2 (1963), S. 53-57 
    ISSN: 1520-510X
    Quelle: ACS Legacy Archives
    Thema: Chemie und Pharmazie
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    s.l. : American Chemical Society
    Inorganic chemistry 4 (1965), S. 135-139 
    ISSN: 1520-510X
    Quelle: ACS Legacy Archives
    Thema: Chemie und Pharmazie
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    s.l. : American Chemical Society
    Inorganic chemistry 7 (1968), S. 1174-1178 
    ISSN: 1520-510X
    Quelle: ACS Legacy Archives
    Thema: Chemie und Pharmazie
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Digitale Medien
    Digitale Medien
    s.l. : American Chemical Society
    Inorganic chemistry 9 (1970), S. 1015-1020 
    ISSN: 1520-510X
    Quelle: ACS Legacy Archives
    Thema: Chemie und Pharmazie
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 23 (2000), S. 0 
    ISSN: 1365-3040
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: We present evidence that plant growth at elevated atmospheric CO2 increases the high-temperature tolerance of photosynthesis in a wide variety of plant species under both greenhouse and field conditions. We grew plants at ambient CO2 (~ 360 μmol mol−1) and elevated CO2 (550–1000 μmol mol−1) in three separate growth facilities, including the Nevada Desert Free-Air Carbon Dioxide Enrichment (FACE) facility. Excised leaves from both the ambient and elevated CO2 treatments were exposed to temperatures ranging from 28 to 48 °C. In more than half the species examined (4 of 7, 3 of 5, and 3 of 5 species in the three facilities), leaves from elevated CO2-grown plants maintained PSII efficiency (Fv/Fm) to significantly higher temperatures than ambient-grown leaves. This enhanced PSII thermotolerance was found in both woody and herbaceous species and in both monocots and dicots. Detailed experiments conducted with Cucumis sativus showed that the greater Fv/Fm in elevated versus ambient CO2-grown leaves following heat stress was due to both a higher Fm and a lower Fo, and that Fv/Fm differences between elevated and ambient CO2-grown leaves persisted for at least 20 h following heat shock. Cucumis sativus leaves from elevated CO2-grown plants had a critical temperature for the rapid rise in Fo that averaged 2·9 °C higher than leaves from ambient CO2-grown plants, and maintained a higher maximal rate of net CO2 assimilation following heat shock. Given that photosynthesis is considered to be the physiological process most sensitive to high-temperature damage and that rising atmospheric CO2 content will drive temperature increases in many already stressful environments, this CO2-induced increase in plant high-temperature tolerance may have a substantial impact on both the productivity and distribution of many plant species in the 21st century.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    Sociological inquiry 34 (1964), S. 0 
    ISSN: 1475-682X
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Sociologie
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    ISSN: 1365-2486
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie , Energietechnik , Geographie
    Notizen: Rising atmospheric CO2 has been predicted to reduce litter decomposition as a result of CO2-induced reductions in litter quality. However, available data have not supported this hypothesis in mesic ecosystems, and no data are available for desert or semi-arid ecosystems, which account for more than 35% of the Earth's land area. The objective of our study was to explore controls on litter decomposition in the Mojave Desert using elevated CO2 and interannual climate variability as driving environmental factors. In particular, we sought to evaluate the extent to which decomposition is modulated by litter chemistry (C:N) and litter species and tissue composition. Naturally senesced litter was collected from each of nine 25 m diameter experimental plots, with six plots exposed to ambient [CO2] or 367 μL CO2 L−1 and three plots continuously fumigated with elevated [CO2] (550 μL CO2 L−1) using FACE technology beginning in April 1997. All litter collected in 1998 (a wet, or El Niño year; 306 mm precipitation) was pooled as was litter collected in 1999 (a dry year; 94 mm). Samples were allowed to decompose for 4 and 12 months starting in May 2001 in mesh litterbags in the locations from which litter was collected. Decomposition of litter produced under elevated CO2 and ambient CO2 did not differ. Litter produced in the wetter year showed more rapid initial decomposition (over the first 4 months) than that produced in the drier year (27±2% yr−1 or 7.8±0.7 g m−2 yr−1 for 1998 litter; 18±3% yr−1 or 2.2±0.4 g m−2 yr−1 for 1999 litter). C:N ratios of litter produced under elevated CO2 (wet year: 37±0.5; dry year: 42±2.5) were higher than those of litter produced under ambient CO2 (wet year: 34±1.1; dry year: 35±1.4). Litter production in the wet year (amb. CO2: 25.1±1.1 g m−2 yr−1; elev. CO2: 35.0±1.1 g m−2 yr−1) was more than twice as high as that in the dry year (amb. CO2: 11.6±1.7 g m−2, elev. CO2: 13.3±3.4 g m−2), and contained a greater proportion of Lycium pallidum and a lower proportion of Larrea tridentata than litter produced in the dry year. Decomposition, viewed across all treatments, decreased with increasing C:N ratios, decreased with increasing proportions of Larrea tridentata and increased with increasing proportions of Lycium pallidum and Lycium andersonii. Because litter C:N did not vary by litter production year, and CO2 did not alter decomposition or litter species/tissue composition, it is likely that the impact of year-to-year variation in precipitation on the proportion of key plant species in the litter may be the most important way in which litter decomposition will be modulated in the Mojave Desert under future rising atmospheric CO2.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Science Ltd
    Global change biology 6 (2000), S. 0 
    ISSN: 1365-2486
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie , Energietechnik , Geographie
    Notizen: Studies have suggested that more carbon is fixed due to a large increase in photosynthesis in plant–soil systems exposed to elevated CO2 than could subsequently be found in plant biomass and soils –- the locally missing carbon phenomenon. To further understand this phenomenon, an experiment was carried out using EcoCELLs which are open-flow, mass-balance systems at the mesocosm scale. Naturally occurring 13C tracers were also used to separately measure plant-derived carbon and soil-derived carbon. The experiment included two EcoCELLs, one under ambient atmospheric CO2 and the other under elevated CO2 (ambient plus 350 μL L− 1). By matching carbon fluxes with carbon pools, the issue of locally missing carbon was investigated. Flux-based net primary production (NPPf) was similar to pool-based primary production (NPPp) under ambient CO2, and the discrepancy between the two carbon budgets (12 g C m− 2, or 4% of NPPf) was less than measurement errors. Therefore, virtually all carbon entering the system under ambient CO2 was accounted for at the end of the experiment. Under elevated CO2, however, the amount of NPPf was much higher than NPPp, resulting in missing carbon of approximately 80 g C m− 2 or 19% of NPPf which was much higher than measurement errors. This was additional to the 96% increase in rhizosphere respiration and the 50% increase in root growth, two important components of locally missing carbon. The mystery of locally missing carbon under elevated CO2 remains to be further investigated. Volatile organic carbon, carbon loss due to root washing, and measurement errors are discussed as some of the potential contributing factors.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...