Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    ISSN: 1476-4687
    Quelle: Nature Archives 1869 - 2009
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Notizen: [Auszug] Ras proteins regulate cellular growth and differentiation, and are mutated in 30% of cancers. We have shown recently that Ras is activated on and transmits signals from the Golgi apparatus as well as the plasma membrane but the mechanism of compartmentalized signalling was not determined. Here ...
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1040-452X
    Schlagwort(e): CDC25 ; Dbl ; Ras-related proteins ; Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie
    Notizen: Members of the Ras superfamily of proteins function as regulated GDP/GTP switches that cycle between active GTP-complexed and inactive GDP-complexed states. Guanine nucleotide exchange factors (GEFs) stimulate formation of the GTP-bound state, whereas GTPase activating proteins (GAPs) catalyze the formation of the GDP-bound state. We describe three studies that evaluate the mechanism of action of GEFs for Ras (SOS1 and RasGRF/CDC25) or Ras-related Rho (Dbl and Vav) proteins.Growth factor-mediated activation of Ras is believed to be mediated by activation of Ras GEFs (CDC25/GRF and SOS1/2). Although the mechanisms of Ras GEF regulation are unclear, recent studies suggest that translocation of SOS1 to the plasma membrane, where Ras is located, might be responsible for Ras activation. Our observation that the addition of the Ras plasma membrane-targeting sequence to the catalytic domains of CDC25 and SOS1 greatly enhanced their transforming and transactivation activities (10-50 fold and 5-10 fold, respectively) suggests that membrane translocation alone is sufficient to potentiate GEF activation of Ras.We have determined that two Ras-related proteins, designated R-Ras and R-Ras2/TC21, can trigger the malignant transformation of NIH 3T3 cells via activation of the Ras signal transduction pathway. Furthermore, like Ras and R-Ras, we observed that TC21 GTPase activity was stimulated by Ras GAPs. However, we observed that both SOS1 and CDC25 were activators of normal TC21, but not R-Ras, transforming activities. Therefore, TC21, but not R-Ras, may be activated by the same extracellular signaling events that activate Ras proteins.Dbl family proteins are believed to function as GEFs and activators of the Ras-related Rho family of proteins. However, one Dbl family oncogene, designated Vav, has been reported to be a GEF for Ras proteins. Therefore we were interested in determining whether Dbl family oncogenes cause transformation by triggering the constitutive activation of Rho or Ras proteins. Our results suggest that Dbl oncogenes cause transformation via a Ras-independent activation of MAP kinases and Rho family proteins. © 1995 wiley-Liss, Inc.
    Zusätzliches Material: 7 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...