Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 52 (1994), S. 595-610 
    ISSN: 0020-7608
    Schlagwort(e): Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Chemie und Pharmazie
    Notizen: Electronic structure investigations on a broad range of gold compounds, including naked and ligated gold clusters, are reviewed. The calculations have been carried out with a recently introduced relativistic variant of the linear combination of Gaussian-type orbitals density-functional (LCGTO-DF) method which affords all-electron investigations for very large systems. The accuracy of the method will be evaluated for the gold dimer. Then the electronic structure of the naked cluster Au55 is studied, both in Ih and Oh symmetry. Nonrelativistic and relativistic results obtained by the present method are compared to those of the much simpler jellium model. Since triphenylphosphine is among the most common ligands in gold chemistry a series of mononuclear gold phosphine compounds MeAuPR3 with increasingly complex ligands PR3 (R = H, CH3, C5H6) is discussed. The calculations reveal the success and the limitations of simpler phosphines often employed as model ligands in theoretical studies. Some aspects of the phosphine gold interaction in these simpler compounds carry over to the main group element centered gold clusters. Thereby one arrives at a rationalization of the particularly high stability of the carbon-centered octahedral cluster cation [(R3PAu)6C]2+ as compared to the neighboring isoelectronic boron and nitrogen-centered clusters. © 1994 John Wiley & Sons, Inc.
    Zusätzliches Material: 2 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 110 (1999), S. 2785-2799 
    ISSN: 1089-7690
    Quelle: AIP Digital Archive
    Thema: Physik , Chemie und Pharmazie
    Notizen: Basis set methods for calculating dynamic polarizabilities and excitation energies via coupled Kohn–Sham equations within time-dependent density functional theory are introduced. The methods can be employed after solving the ground state Kohn–Sham equations with a fitting function approach. Successful applications of the methods to test molecules are presented. Coupled Kohn–Sham methods based on the linear response of the Kohn–Sham density matrix are derived from the standard coupled Kohn–Sham equation based on the linear response of the electron density and the relations between the two types of coupled Kohn–Sham equations are investigated. The choice of norm functions associated with basis set representations of the coupled Kohn–Sham equations is discussed and shown to be a critical point of basis set approaches to time-dependent density functional theory. © 1999 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 112 (2000), S. 2498-2506 
    ISSN: 1089-7690
    Quelle: AIP Digital Archive
    Thema: Physik , Chemie und Pharmazie
    Notizen: High resolution electron energy loss spectroscopy (HREELS) measurements and density functional model cluster calculations are presented to clarify the vibrational structure of the adsorption system C6H6/Si(001). All vibrational modes of the adsorption complex, which previously was identified to exhibit a cyclohexadiene-like structure, have been calculated and characterized according to the motion of the different atoms of the adsorption complex. Special emphasis is placed on the low-frequency modes. The coupling between the adsorbate and the substrate modes is analyzed with the help of a model that represents various limiting situations. Different coupling variants are found to apply to different collective modes of the adsorbate. The A1 and B1 modes can be described rather well by a model that only encompasses the adsorbate and the Si dimer underneath; for the A2 and B2 modes a frozen substrate description of the adsorption complex is more appropriate. © 2000 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 109 (1998), S. 2056-2064 
    ISSN: 1089-7690
    Quelle: AIP Digital Archive
    Thema: Physik , Chemie und Pharmazie
    Notizen: Even if an isolated defect results only in a local perturbation of the electron density, the wave function and the first-order reduced density matrix may still exhibit a long-range response to the defect. We present an axiomatic approach to the construction of a general-purpose embedding scheme which is able to cope with this problem. We start from a list of requirements, which we consider pertinent to an accurate embedding technique, and we proceed to demonstrate that the extended subspace approach recently proposed by Head and Silva [J. Chem. Phys. 104, 3244 (1996)] is the minimal realization of such an embedding scheme. The variational principle, strict fulfillment of the Pauli exclusion principle, a finite dimensional parameter space, and the possibility to perform the minimization by a standard SCF (self-consistent field) procedure are the key requirements which lead to a constrained SCF procedure. Self-embedding consistency and local completeness of the Hilbert space can then be realized by a mathematically very simple construction principle for the active subspace which can be formulated independent of any basis set. We analyze the spatial structure of the resulting minimal orbital space by means of tight-binding model Hamiltonians. For metal systems, we find active and frozen constrained SCF spaces to necessarily interlock in a strong and complicated fashion. © 1998 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 106 (1997), S. 8940-8941 
    ISSN: 1089-7690
    Quelle: AIP Digital Archive
    Thema: Physik , Chemie und Pharmazie
    Notizen: We systematize and clarify the significance and relationship of recently published numerical findings regarding atomic and molecular anions to both density functional theory fundamentals and approximations. Calculations for F− with all-numerical codes are included as brief examples. © 1997 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Digitale Medien
    Digitale Medien
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 106 (1997), S. 5189-5201 
    ISSN: 1089-7690
    Quelle: AIP Digital Archive
    Thema: Physik , Chemie und Pharmazie
    Notizen: A series of gold clusters spanning the size range from Au6 through Au147 (with diameters from 0.7 to 1.7 nm) in icosahedral, octahedral, and cuboctahedral structure has been theoretically investigated by means of a scalar relativistic all-electron density functional method. One of the main objectives of this work was to analyze the convergence of cluster properties toward the corresponding bulk metal values and to compare the results obtained for the local density approximation (LDA) to those for a generalized gradient approximation (GGA) to the exchange-correlation functional. The average gold–gold distance in the clusters increases with their nuclearity and correlates essentially linearly with the average coordination number in the clusters. An extrapolation to the bulk coordination of 12 yields a gold–gold distance of 289 pm in LDA, very close to the experimental bulk value of 288 pm, while the extrapolated GGA gold–gold distance is 297 pm. The cluster cohesive energy varies linearly with the inverse of the calculated cluster radius, indicating that the surface-to-volume ratio is the primary determinant of the convergence of this quantity toward bulk. The extrapolated LDA binding energy per atom, 4.7 eV, overestimates the experimental bulk value of 3.8 eV, while the GGA value, 3.2 eV, underestimates the experiment by almost the same amount. The calculated ionization potentials and electron affinities of the clusters may be related to the metallic droplet model, although deviations due to the electronic shell structure are noticeable. The GGA extrapolation to bulk values yields 4.8 and 4.9 eV for the ionization potential and the electron affinity, respectively, remarkably close to the experimental polycrystalline work function of bulk gold, 5.1 eV. Gold 4f core level binding energies were calculated for sites with bulk coordination and for different surface sites. The core level shifts for the surface sites are all positive and distinguish among the corner, edge, and face-centered sites; sites in the first subsurface layer show still small positive shifts. © 1997 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Digitale Medien
    Digitale Medien
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 106 (1997), S. 6020-6030 
    ISSN: 1089-7690
    Quelle: AIP Digital Archive
    Thema: Physik , Chemie und Pharmazie
    Notizen: The embedding approach to the electronic structure of local perturbations in extended systems is based on the fundamental assumption that beyond a certain region around the defect, the properties of the environment are not altered by the presence of the defect. In many computational schemes the resulting subdivision of the defect system into a central and an external region is defined in terms of orbital basis functions. The fundamental embedding assumption then translates into a partitioning of matrix representations, accompanied by fixing the external region contributions to their values in the unperturbed reference system. With the help of density functional cluster-in-cluster embedding calculations we have investigated the quality of this assumption without introducing any additional approximation as usually done to arrive at a computationally feasible embedding scheme. The fundamental embedding assumption is found to cause spurious virtual orbital admixtures to the density matrix which lead to artifacts in the results of embedding calculations. To minimize these undesirable effects, a special "class orthogonalization" scheme has been employed. It allows a perfect reproduction of the defect induced charge density changes as judged by cluster-in-cluster model calculations for a hydrogen substitutional defect in large Lin clusters (with n up to 309). However, equilibrium geometries, total energies, and vibrational frequencies calculated with this embedding scheme do not exhibit any improvement over results from calculations employing the corresponding nonembedded model clusters. The reason for this failure which prevents the expected convergence of the calculated results with increasing cluster size is analyzed. Thus, from a pragmatic point of view, "naked" cluster models are preferable, at least for metal substrates, due to their relative computational simplicity. Possible techniques to either avoid the virtual orbital admixtures or to improve the quality of the total energies obtained from the embedding calculations are discussed together with the drawbacks of these schemes. © 1997 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Digitale Medien
    Digitale Medien
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 104 (1996), S. 7329-7337 
    ISSN: 1089-7690
    Quelle: AIP Digital Archive
    Thema: Physik , Chemie und Pharmazie
    Notizen: The interaction of Ni and Cu atoms as well as Ni4 and Cu4 clusters with cationic and anionic sites of the MgO(100) surface has been studied by means of gradient-corrected density functional calculations using cluster models. We found that the cationic surface atoms and the fourfold hollow sites are essentially inert while Ni and Cu atoms as well as their clusters are weakly oxidized by the surface oxygens. The adhesion energy is 0.62 eV/atom for Ni4 and 0.36 eV/atom for Cu4. This reflects the stronger bonding of a surface oxygen with a Ni atom, 1.24 eV, compared to a Cu atom, 0.28 eV. The reason for the stronger bonding of Ni is the presence of the uncomplete 3d shell. In fact, the mixing of the 3d orbitals with the O 2p band leads to the formation of a covalent polar bond of moderate strength. Cu binds mainly via the 4s electrons and the interaction is weaker. An important conclusion is that the metal–metal bonds in the cluster are stronger than the metal–substrate bonds. The adsorbed clusters feature somewhat longer intermetallic distances than in the gas phase, but clusters epitaxially adsorbed on top of the surface oxygens feature significantly longer metal–metal bonds and thus are less stable. © 1996 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Digitale Medien
    Digitale Medien
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 102 (1995), S. 3695-3702 
    ISSN: 1089-7690
    Quelle: AIP Digital Archive
    Thema: Physik , Chemie und Pharmazie
    Notizen: Using a scalar relativistic version of the linear combination of Gaussian-type orbitals density functional method we have computed electronic and spectroscopic properties of the monoxides and monocarbonyls of Ni, Pd, and Pt. All-electron calculations with large basis sets were performed at both the local and the gradient-corrected density functional level. It is found that relativistic effects play a crucial role in Pt compounds, in particular as far as the metal–ligand distance is concerned. At the relativistic level the Pt–O and the Pt–CO distances are shorter than the corresponding Pd–O and Pd–CO bond lengths. Thus the trend in the metal–ligand distances is Ni〈Pt〈Pd. This is connected to a considerable relativistic strengthening of the Pt–O and Pt–CO bonds. Gradient corrections significantly reduce the computed binding energies, but are much less important for geometry and vibrational frequencies. They cause a more or less similar weakening and lengthening of the bonds which is quite independent of the metal considered. © 1995 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Digitale Medien
    Digitale Medien
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 100 (1994), S. 1353-1365 
    ISSN: 1089-7690
    Quelle: AIP Digital Archive
    Thema: Physik , Chemie und Pharmazie
    Notizen: An intermediate neglect of differential overlap method for examining the electronic structure of actinide complexes is developed. It is characterized by a basis set obtained from relativistic Dirac–Fock atomic calculations, the inclusion of all one-center two-electron integrals, and a parameter set based on molecular geometry and ionization spectra. The model is successful in reproducing the geometries of many small test molecules, especially the hexahalides and tetrahalides of the early actinides. We also investigate the bonding in actinocenes and the photoelectron spectra of pentavalent uranium amide/imide complexes as two diverse examples in which this model can be used to help in understanding and prediction.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...