Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Cell & tissue research 248 (1987), S. 153-160 
    ISSN: 1432-0878
    Schlagwort(e): Thyroid gland ; Thyroglobulin ; Intracellular transport ; Secretion ; Monensin ; Isolated follicles ; Pig
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Medizin
    Notizen: Summary The effect of monensin on the secretion of thyroglobulin was studied in open follicles isolated from pig thyroid tissue; in this system, thyroglobulin is secreted into the incubation medium. When monensin was present during a 4-h chase incubation after pulse-labelling with3H-leucine, the secretion of labelled thyroglobulin was reduced by about 85%; in electron-microscopic autoradiographs of rat thyroid lobes labelled and chase-incubated under similar conditions the relative number of grains over follicle lumina was strongly reduced when monensin was present during the chase. These observations are in agreement with the consensus that monensin arrests transport of secretory proteins in the Golgi complex. In other experiments, pulse-labelled follicles were chase-incubated for 1.5 h whereby labelled thyroglobulin was transported from the RER to exocytic vesicles. Monensin present during a subsequent chase of 0.5 h caused only a moderate decrease of labelled thyroglobulin secretion. TSH present during the second chase-stimulated secretion in both control and monensin-exposed follicles. TSH also caused a drastic reduction of exocytic vesicles in rat thyroid lobes, and the number of vesicles remaining in the cells was the same in controls and lobes exposed to the ionophore. The observations are interpreted to show that monensin does not inhibit the basal or TSH-stimulated transport of thyroglobulin from the site of monensin-induced arrest in the Golgi complex to the apical cell surface or the exocytosis of thyroglobulin.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Cell & tissue research 250 (1987), S. 701-708 
    ISSN: 1432-0878
    Schlagwort(e): Thyroid gland ; Thyroglobulin ; Intracellular transport ; Secretion ; Energy deprivation ; Oxidative phosphorylation ; Pig
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Medizin
    Notizen: Summary The effect of energy deprivation on the intracellular transport and secretion of thyroglobulin was studied in open follicles isolated from porcine thyroids. Follicles were pulse-labeled with 3H-leucine or 3H-galactose. Labeled thyroglobulin was secreted into the incubation medium where it was isolated by means of immunoprecipitation. Secretion was followed in chase incubations under various experimental conditions using CCCP (carbonyl-cyanide-mchlorophenylhydrazone) or DNP (dinitrophenol), both uncouplers of oxidative phosphorylation, or CN−, which inhibits respiration. CCCP (1 μM) was shown to inhibit exocytosis by about 80%, DNP (0.1–5 mM) by 45–85%, and CN− (0.5–1.1 mM) by 5–55%. By combining CN− with the ionophore monensin, which blocks transport through the Golgi complex but does not essentially interfere with exocytosis, evidence was obtained that CN− also inhibits transport of thyroglobulin from the Golgi cisternae to the exocytic vesicles by 40%. Electron-miroscopic autoradiography of isolated thyroid lobes from the rat also indicated that transport of 3H-leucine label into the follicle lumen is inhibited in the presence of CCCP or CN−. Intracellular ATP content was found to be about 40% of the control level in follicles incubated with CCCP (1 uM) or CN− (0.9 mM). The results show that the transport of thyroglobulin from the Golgi complex to the exocytic vesicles as well as from the exocytic vesicles into the follicle lumen is dependent upon metabolic energy. The transport blocks are probably associated with inhibited membrane fusions and fissions.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...