Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • fusion  (2)
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Journal of fusion energy 1 (1981), S. 69-86 
    ISSN: 1572-9591
    Schlagwort(e): Neutral beam injector ; fusion ; 3He ; direct energy conversion
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Energietechnik
    Notizen: Abstract We describe a design for a 120-keV, 2.3-MW,3He neutral beam injector for use on a D-3He fusion reactor. The constraint that limits operating life when injecting He is its high sputtering rate. The sputtering is partly controlled by using an extra grid to prevent ion flow from the neutralizer duct to the electron suppressor grid, but a tradeoff between beam current and operating life is still required. Hollow grid wires functioning as mercury heat pipes cool the grid and enable steady state operation. Voltage holding and radiation effects on the acceleration grid structure are discussed. We also briefly describe the vacuum system and analyze use of a direct energy converter to recapture energy from unneutralized ions exiting the neutralizer. Of crucial importance to the technical feasibility of the3He-burning reactor are the injector efficiency and cost; these are 53% and $5.5 million, respectively, when power supplies are included.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Journal of fusion energy 2 (1982), S. 131-143 
    ISSN: 1572-9591
    Schlagwort(e): fusion ; direct energy conversion ; neutral beams
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Energietechnik
    Notizen: Abstract A direct-energy converter was developed for use on neutral-beam injectors. The purpose of the converter is to raise the efficiency of the injector by recovering the portion of the ion beam not converted to neutrals. In addition to increasing the power efficiency, direct conversion reduces the requirements on power supplies and eases the beam dump problem. The converter was tested at Lawrence Berkeley Laboratory on a reduced-area version of a neutral-beam injector developed for use on the Tokamak Fusion Test Reactor at Princeton. The conversion efficiency of the total ion power was 65 ±7% at the beginning of the pulse, decaying to just over 50% by the end of the 0.6-s pulse. Once the electrode surfaces were conditioned, the decay was due to the rise in pressure of only the beam gas and not to outgassing. The direct converter was tested with 1.7 A of hydrogen ions and with 1.5 A of helium ions through the aperture with similar efficiencies. At the midplane through the beam, the line power density was 0.7 MW/m, for comparison with our calculations of slab beams and the prediction of 2–4 MW/m in some reactor studies. Over 98 kV was developed at the ion collector when the beam energy was 100 keV. When electrons were suppressed magnetically, rather than electrostatically, the efficiency dropped to 40%. However, a better designed electron catcher could improve this efficiency. New electrode material released gas (mostly H2 and CO) in amounts that exceeded the input of primary gas from the beam. The electrodes were all made of 0.51-mm-thick molybdenum cooled only by radiation. This allowed the heating by the beam to outgas the electrodes and for them to stay hot enough to avoid the reabsorption of gas between shots. By minor redesign of the electrodes, adding cryopanels near the electrodes, and grounding the ion source, these results extrapolate with high confidence to an efficiency of 70–80% at a power density of 2–4 MW/m. Higher power may be possible with magnetic electron suppression.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...