Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (10)
  • 1960-1964  (1)
  • 11
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 44 (1992), S. 679-690 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Stretching force constants for formamide and its seven associated species involving two to four molecules hydrogen-bonded through linear and cyclic configurations and 10 structures containing formamide hydrogen-bonded with one to five water molecules are reported. Since ab initio calculations are rather inconvenient to perform on such big clusters and are time-consuming, CNINDO MO calculations were carried out using the gradient method. The results demonstrate, on the one hand, the feasibility of semiempirical calculations for the evaluation of trends in force constants for big clusters where generally ab initio calculations become much involved and, on the other hand, explain the effect of hydrogen bonding and cooperativity on force constants and vibrational spectra of biologically important systems composed of formamide in the condensed phase and its aqueous solutions. The C=O and N—H stretching force constants are found to reduce significantly on hydrogen bonding. The reduction in force constant is further enhanced when two cyclic dimers become associated through a linear hydrogen bond. The results indicate justification for the stabilization of the formamide structure with two cyclic dimers hydrogen-bonded together. The reduction in the force constants on hydrogen bonding also reflect the cooperativity contribution. The C=O and C—N stretching force constants for the structures corresponding to formamide in liquid and aqueous solution phases are in agreement with the experimental vibrational frequencies reported.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...