Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    ISSN: 1434-6052
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract A study of the two-jet mass spectrum measured with the UA 2 calorimeter has revealed a signal from hadronic decays ofW andZ bosons above a large background. Production and decay properties of the signal have been measured. The combined production cross-section σ·B(W, Z → two jets) is 9.6±2.3 (stat.)±1.1 (syst.) nb, compared with an expectation of 5.8 nb calculated to order α s 2 . A limit on the production cross-section of additional heavy vector bosons decaying into two jets is given as a function of the boson mass.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    ISSN: 1434-6052
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract In an experiment with the 30-inch Hybrid Spectrometer at Fermilab we have obtained the inclusive and semi-inclusive production cross sections of the ϱ0 meson using a conventional background subtraction technique. Production cross sections for the ϱ0 are derived as a function of the Feynman scaling variablex, and the transverse variablesp t 2 andE t =(p t 2 +M 2)1/2. The longitudinal distributions are compared with the (1−x) dependence of the proton and meson valence quark structure functions, using various forms of recombination and fragmentation models. The transverse distributions are compared with thermodynamic models. We give density matrix elements for the ϱ0 production from pions in the extreme forward region.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Bioluminescence and Chemiluminescence 9 (1994), S. 113-122 
    ISSN: 0884-3996
    Keywords: Chemiluminescence ; imaging ; CCD ; reporter genes ; luciferase ; DNA ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Photon imaging is an increasingly important technique for the measurement and analysis of chemiluminescence and bioluminescence. New high-performance low-light level imaging systems have recently become available for the life science. These systems use advances in camera design and digital image processing and are now being used for a wide range of luminescence applications. They offer good sensitivity for photon detection and large dynamic range, and are suitable for quantitative analysis. This is achieved using a range of software techniques including image arithmetic, histogramming or summing regions of interest, feature extraction and multiple image processing for kinetics or assay screening. Improvements in imageprocessing hardware and software have increased the usefulness of these systems in the biosciences.Low-light imaging is a rapid and non-invasive method for the sensitive detection and analysis of luminescent assays. As such it offers a powerful and sensitive tool for investigating processes, both at the cellular level (luc and lux reporter genes, intracellular signalling) and for measurement of macro samples (immunoassays, gels and blots, tissue sections).
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Bioluminescence and Chemiluminescence 5 (1990), S. 123-130 
    ISSN: 0884-3996
    Keywords: CCD ; imaging ; gene expression ; single cells ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Quantitative and sensitive imaging of chemiluminescence, bioluminescence and fluorescence emissions is emerging as an increasingly important technique for a range of biomedical applications (Hooper et al., 1990). A brief review of low-light-level imaging is presented, with particular reference to charge-coupled devices (CCD). Detectors for sensitive imaging are described and compared, including various CCDs and photoncounting devices. Image analysis techniques based on digital image processing, may be applied to quantify luminescent processes with these detectors. Images of luciferase gene expression in single mammalian cells have been obtained using a particular highsensitivity intensified CCD camera. The method is illustrated using cell monolayers infected with recombinant vaccinia virus encoding the firefly luciferase, luc gene (Rodriguez et al., 1988). The CCD camera has been used to detect luciferase expression in single, recombinant infected cells amongst over one million non-infected cells. The rapid detection of luciferase-expressing viruses may be used for the selection of virus deletion mutants into which the luciferase gene has been cloned at specific sites. This is particularly useful in the case of viruses such as cytomegalovirus which have slow replication cycles.This direct imaging technique is simple and versatile. It offers a rapid, non-invasive method for the sensitive detection of luciferase activity in single, luciferase-expressing cells. One can envisage the use of luciferase as a sensitive and convenient co-selection marker gene in the analysis of both gene expression and protein function. These methods offer tremendous potential in the fields of molecular and cellular biology.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...