Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 27 (1985), S. 145-157 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The orthogonalized direct diagonalization (ODD) method is used to predict the valence-shell ionization spectra for the series of hydrocarbons ethane (C2H6), ethylene (C2H4), and acetylene (C2H2) within an EOM/propagator formalism. Both (a) third-order and (b) higher-order (with h5 terms in the excitation operator manifold) calculations are presented in order to illustrate the effect of the extended operator manifold on the predicted valence-shell spectra. It is shown that the major effect of the h5 manifold is concentrated in its “occupied” part. Along with a general shifting of the main lines for outer valence ionizations to lower values (together with a slight reduction in pole strength), it is found that the effect of the h5 manifold in the inner valence region is dependent on the system being studied.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 17 (1996), S. 888-904 
    ISSN: 0192-8651
    Keywords: Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A comparison is made between geometry optimization in Cartesian coordinates, in Z-matrix coordinates, and in natural internal coordinates for the location of transition states. In contrast to the situation with minima, where all three coordinate systems are of comparable efficiency if a reliable estimate of the Hessian matrix is available at the starting geometry, results for 25 different transition states covering a wide range of structural types demonstrate that in practice Z-matrix coordinates are generally superior. For Cartesian coordinates, the commonly used Hessian update schemes are unable to guarantee preservation of the necessary transition state eigenvalue structure, while current algorithms for generating natural internal coordinates may have difficulty handling the distorted geometries associated with transition states. The widely used Eigenvector Following (EF) algorithm is shown to be extremely efficient for optimizing transition states. © 1996 by John Wiley & Sons, Inc.
    Additional Material: 5 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 56 (1995), S. 733-746 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Density functional theory (DFT) was used to study reactions involving small molecules. Relative energies of isomers and transition structures of diazene, formaldehyde, and methylenimine were determined using various DFT functionals and results were compared with MP2 and MP4 calculations. DFT reaction barriers were found to be consistently lower. For some reactions, such as OH + H2→ H2O + H, gradient-corrected functionals predict very low or nonexistent barriers. The hybrid Hartree-Fock-DFT adiabatic connection method (ACM) often provides much better results in such cases. The performance of several density functionals, including ACM, was tested in calculations on over 100 atomization, hydrogenation, bond dissociation, and isodesmic reactions. The ACM functional provides consistently better geometries and reaction energetics than does any other functional studied. In cases where both HF and gradient-corrected DFT methods underestimate bond distances, the ACM geometries may be inferior to those predicted by gradient-corrected DFT methods. © 1995 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 12 (1991), S. 606-610 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Geometry optimization directly in Cartesian coordinates using the EF and GDIIS algorithms with standard Hessian updating techniques is compared and contrasted with optimization in internal coordinates utilizing the well known Z-matrix formalism. Results on a test set of 20 molecules show that, with an appropriate initial Hessian, optimization in Cartesians is just as efficient as optimization in internals, thus rendering it unnecessary to construct a Z-matrix in situations where Cartesians are readily available, for example from structural databases or graphical model builders.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 7 (1986), S. 349-358 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The performance of a variety of levels of theory in evaluating molecular electron affinities (EAs) has been systematically examined. Calculations have been carried out for six different basis sets and for nine theoretical procedures including unrestricted (UHF) and restricted (RHF) Hartree-Fock theory, Møler-Plesset perturbation theory (UMP2, UMP3, UMP4), configuration interaction (UCISD, RCISD, RCISD(Q)) and equations-of-motion (EOM) approaches. Electron affinities were evaluated for CH3, NH2, OH, F, C2H, CN, BO, N3, OCN, and NO2. Very poor results are generally obtained unless diffuse functions are included in the basis set and electron correlation is incorporated. Even with the largest basis set used in the present study (6-311 + + G(2d, 2p)), there are still residual errors greater than 0.2 eV (UMP4) or 0.6 eV (CISD) in the absolute EAs. However, better results are obtained under certain circumstances for relative EAs. The results appear to be significantly affected by spin contamination in the UHF wave-functions. For those systems for which spin contamination is small, best absolute values of the EAs generally come from the EOM and UMP2 calculations, whereas the most constant errors (thereby allowing systematic correction) are found at the UMP4, CISD, and RCISD(Q) levels. For the systems for which spin contamination is larger, best results are obtained with the CI-based procedures (CISD and RCISD(Q)). The errors in calculated EAs for the molecules with differing electronic characteristics can vary quite widely. Caution must therefore be exercised before applying schemes which rely on a constancy of errors to estimate electron affinities. The UMP procedures appear particularly suspect in this regard if spin contamination is significant. The RCISD(Q) approach is recommended under such circumstances.
    Additional Material: 16 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 7 (1986), S. 385-395 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: An algorithm for locating transition states designed for use in the ab initio program package GAUSSIAN 82 is presented. It is capable of locating transition states even if started in the wrong region of the energy surface, and, by incorporating the ideas on hessian mode following due to Cerjan and Miller, can locate transition states for alternative rearrangement/dissociation reactions from the same initial starting point. It can also be used to locate minima.
    Additional Material: 7 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 8 (1987), S. 563-574 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A numerical algorithm for locating both minima and transition states designed for use in the ab initio program package GAUSSIAN 82 is presented. It is based on the RFO method of Simons and coworkers and is effectively the numerical version of an analytical algorithm (OPT = EF) previously published in this journal. The algorithm is designed to make maximum use of external second derivative information obtained from prior optimizations at lower levels of theory. It can be used with any wave function for which an energy can be calculated and is about two to three times faster than the default DFP algorithm (OPT = FP) supplied with GAUSSIAN 82.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 14 (1993), S. 1339-1346 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Modifications are made to a previously published algorithm for constrained optimization in Cartesian coordinates (J. Comp. Chem., 13, 240, 1992) to incorporate both fixed and dummy atoms. Standard distance and angle constraints can now be specified with respect to dummy atoms, greatly extending the range of constraints that can be handled. Fixed atoms can be eliminated from the optimization space and so there is no need to calculate their gradients resulting in potentially significant savings of CPU time in ab initio computations. Several examples illustrate the range and versatility of the modified algorithm. © John Wiley & Sons, Inc.
    Additional Material: 2 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 18 (1997), S. 775-795 
    ISSN: 0192-8651
    Keywords: Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The performance of four commonly used density functionals (VWN, BLYP, BP91, and Becke's original three-parameter approximation to the adiabatic connection formula, referred to herein as the adiabatic connection method or ACM) was studied with a series of six Gaussian-type atomic basis sets [DZP, 6-31G**, DZVP, TZVP, TZ2P, and uncontracted aug-cc-pVTZ (UCC)]. The geometries and dipole moments of over 100 first-row and second-row molecules and reaction energies of over 300 chemical reactions involving such molecules were computed using each of the four density functionals in combination with each of the six basis sets. The results were compared to experimentally determined values. Based on overall mean absolute theory versus experiment errors, it was found that ACM is the best choice for predictions of both energies of reaction [overall mean absolute theory versus experiment error (MATvEE) of 4.7 kcal/mol with our most complete (UCC) basis set] and molecular geometries (overall MATvEE of 0.92 pm for bond distances and 0.88° for bond angles with the UCC basis set). For routine calculations with moderate basis sets (those of double-ζ type: DZP, 6-31G**, and DZVP) the DZVP basis set was, on average, the best choice. There were, however, examples of reactions where significantly larger basis sets were required to achieve reasonable accuracy (errors ≤ 5 kcal/mol). For dipole moments, ACM, BP91, and BLYP performed comparably (overall MATvEE of 0.071, 0.067, and 0.059 debye, respectively, with the UCC basis set). Basis sets that include additional polarization functions and diffuse functions were found to be important for accurate density functional theory predictions of dipole moments. © 1997 by John Wiley & Sons, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 13 (1992), S. 240-253 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: An efficient algorithm for constrained geometry optimization in Cartesian coordinates is presented. It incorporates mode-following techniques within both the classical method of Lagrange multipliers and the penalty function method. Both constrained minima and transition states can be located and, unlike the standard Z-matrix using internal coordinates, the desired constraints do not have to be satisfied in the initial structure. The algorithm is as efficient as a Z-matrix optimization while presenting several additional advantages.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...