Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Source
Years
Language
  • 11
    Publication Date: 2020-08-05
    Description: Let $G$ be a directed acyclic graph with $n$ arcs, a source $s$ and a sink $t$. We introduce the cone $K$ of flow matrices, which is a polyhedral cone generated by the matrices $1_P 1_P^T \in R^{n\times n}$, where $1_P\in R^n$ is the incidence vector of the $(s,t)$-path $P$. Several combinatorial problems reduce to a linear optimization problem over $K$. This cone is intractable, but we provide two convergent approximation hierarchies, one of them based on a completely positive representation of $K$. We illustrate this approach by computing bounds for a maximum flow problem with pairwise arc-capacities.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2020-08-05
    Description: A common technique in the solution of large or complex optimization problems is the use of micro-macro transformations. In this paper, we carry out a theoretical analysis of such transformations for the track allocation problem in railway networks. We prove that the cumulative rounding technique of Schlechte et al. satisfies two of three natural optimality criteria and that this performance cannot be improved. We also show that under extreme circumstances, this technique can perform inconvieniently by underestimating the global optimal value.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2023-08-02
    Description: The Flight Planning Problem is to find a minimum fuel trajectory between two airports in a 3D airway network under consideration of the wind. We show that this problem is NP-hard, even in its most basic version. We then present a novel A∗ heuristic, whose potential function is derived from an idealized vertical profile over the remaining flight distance. This potential is, under rather general assumptions, both admissible and consistent and it can be computed efficiently. The method outperforms the state-of-the-art heuristic on real-life instances.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...