Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Materialart
Erscheinungszeitraum
  • 11
    ISSN: 1432-1203
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Medizin
    Notizen: Abstract Levels of the enzyme dopamine β-hydroxylase (DβH) in the plasma and cerebrospinal fluid (CSF) are closely related biochemical phenotypes. Both are under strong genetic control. Linkage and association studies suggest the structural gene encoding DβH (locus name, DΒH) is a major locus influencing plasma activity of DβH. This study examined relationships of DBH genotype determined at two polymorphic sites (a previously described GT repeat, referred to as the DBH STR and a single-base substitution at the 3’ end of DBH exon 2, named DBH*444 g/a), to CSF levels of DβH protein in European-American schizophrenic patients, and to plasma DβH activity in European-American patients with mood or anxiety disorders. We also investigated linkage disequilibrium (LD) between the polymorphisms in the pooled samples from those European-American subjects (n=104). Alleles of DBH*444 g/a were associated with differences in mean values of CSF DβH levels. Alleles at both polymorphisms were associated with plasma DβH activity. Significant LD was observed between respective alleles with similar apparent influence on biochemical phenotype. Thus, allele A3 of the DBH STR was in positive LD with DBH*444a, and both alleles were associated with lower plasma DβH activity. DBH STR allele A4 was in positive LD with DBH*444 g, and both alleles were associated with higher plasma DβH activity. The results confirm that DBH is a major quantitative trait locus for plasma DβH activity, and provide the first direct evidence that DBH also influences CSF DβH levels. Both polymorphisms examined in this study appear to be in LD with one or more functional polymorphisms that mediate the influence of allelic variation at DBH on DβH biochemical phenotypic variation
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 12
    Digitale Medien
    Digitale Medien
    Springer
    Human genetics 〈Berlin〉 95 (1995), S. 677-680 
    ISSN: 1432-1203
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie , Medizin
    Notizen: Abstract Abnormalities in monoamine metabolism, including serotonin metabolism, have been implicated in the pathophysiology of affective disorders, schizophrenia, suicide, and other psychiatric disorders. Serotonin transporter protein (SERT) allows neurons to retrieve serotonin that has been released into a synapse. SERT is a site of action for several drugs with CMS effects, including both therapeutic agents (e.g., antidepressants) and drugs of abuse (e.g., cocaine). This gene had previously been physically mapped to chromosome 17. We used a PCR product corresponding to the 3′ untranslated region of the gene as a probe to identify restriction fragment length polymorphism (RFLP), which we then used to establish that the SLC6A4, genetic locus for SERT, is near 17q12 and probably flanked by D17S58 and D17S73 (a location consistent with observed crossovers). These data should be useful for linkage studies of neuropsychiatric disorders. (Joyce et al. 1993). Neurotransmitter reuptake sites (including also the norepinephrine transporter protein and the dopamine transporter protein) are logical candidate genes for susceptibility to psychiatric illness. We have previously (Gelernter et al. 1993) mapped the norepinephrine transporter protein to chromosome 16q21. We describe here linkage mapping of the serotonin transporter protein gene (gene symbol SLC6A4, for “solute carrier family 6 (neurotransporter, serotonin), member 4”), which was cloned in 1991 (Blakely et al. 1991; Hoffman et al. 1991) and previously assigned to chromosome 17, most likely to band 17q11.2, by in situ hybridization (Ramamoorthy et al. 1993). Our linkage results confirm the initial mapping of SLC6A4 and place it in the linkage map of proximal 17q.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...