Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Source
Years
Language
  • 11
    Publication Date: 2021-02-23
    Description: The presence of a confining boundary can modify the local structure of a liquid markedly. In addition, small samples of finite size are known to exhibit systematic deviations of thermodynamic quantities relative to their bulk values. Here, we consider the static structure factor of a liquid sample in slab geometry with open boundaries at the surfaces, which can be thought of as virtually cutting out the sample from a macroscopically large, homogeneous fluid. This situation is a relevant limit for the interpretation of grazing-incidence diffraction experiments at liquid interfaces and films. We derive an exact, closed expression for the slab structure factor, with the bulk structure factor as the only input. This shows that such free boundary conditions cause significant differences between the two structure factors, in particular, at small wavenumbers. An asymptotic analysis of this result yields the scaling exponent and an accurate, useful approximation of these finite-size corrections. Furthermore, the open boundaries permit the interpretation of the slab as an open system, supporting particle exchange with a reservoir. We relate the slab structure factor to the particle number fluctuations and discuss conditions under which the subvolume of the slab represents a grand canonical ensemble with chemical potential μ and temperature T. Thus, the open slab serves as a test-bed for the small-system thermodynamics in a μT reservoir. We provide a microscopically justified and exact result for the size dependence of the isothermal compressibility. Our findings are corroborated by simulation data for Lennard-Jones liquids at two representative temperatures.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2023-01-03
    Description: The urea-urease clock reaction is a pH switch from acid to basic that can turn into a pH oscillator if it occurs inside a suitable open reactor. We numerically study the confinement of the reaction to lipid vesicles, which permit the exchange with an external reservoir by differential transport, enabling the recovery of the pH level and yielding a constant supply of urea molecules. For microscopically small vesicles, the discreteness of the number of molecules requires a stochastic treatment of the reaction dynamics. Our analysis shows that intrinsic noise induces a significant statistical variation of the oscillation period, which increases as the vesicles become smaller. The mean period, however, is found to be remarkably robust for vesicle sizes down to approximately 200 nm, but the periodicity of the rhythm is gradually destroyed for smaller vesicles. The observed oscillations are explained as a canard-like limit cycle that differs from the wide class of conventional feedback oscillators.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
  • 14
    Publication Date: 2024-01-23
    Description: A depinning transition is observed in a variety of contexts when a certain threshold force must be applied to drive a system out of an immobile state. A well-studied example is the depinning of colloidal particles from a corrugated landscape, whereas its active-matter analogue has remained unexplored. We discuss how active noise due to self-propulsion impacts the nature of the transition: it causes a change of the critical exponent from 1/2 for quickly reorienting particles to 3/2 for slowly reorienting ones. In between these analytically tractable limits, the drift velocity exhibits a superexponential behavior as is corroborated by high-precision data. Giant diffusion phenomena occur in the two different regimes. Our predictions appear amenable to experimental tests, lay foundations for insight into the depinning of collective variables in active matter, and are relevant for any system with a saddle-node bifurcation in the presence of a bounded noise.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-01-23
    Description: This theoretical study concerns a pH oscillator based on the urea-urease reaction confined to giant lipid vesicles. Under suitable conditions, differential transport of urea and hydrogen ion across the unilamellar vesicle membrane periodically resets the pH clock that switches the system from acid to basic, resulting in self-sustained oscillations. We analyse the structure of the phase flow and of the limit cycle, which controls the dynamics for giant vesicles and dominates the pronouncedly stochastic oscillations in small vesicles of submicrometer size. To this end, we derive reduced models, which are amenable to analytic treatments that are complemented by numerical solutions, and obtain the period and amplitude of the oscillations as well as the parameter domain, where oscillatory behavior persists. We show that the accuracy of these predictions is highly sensitive to the employed reduction scheme. In particular, we suggest an accurate two-variable model and show its equivalence to a three-variable model that admits an interpretation in terms of a chemical reaction network. The faithful modeling of a single pH oscillator appears crucial for rationalizing experiments and understanding communication of vesicles and synchronization of rhythms.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2024-01-23
    Description: The chemical diffusion master equation (CDME) describes the probabilistic dynamics of reaction--diffusion systems at the molecular level [del Razo et al., Lett. Math. Phys. 112:49, 2022]; it can be considered the master equation for reaction--diffusion processes. The CDME consists of an infinite ordered family of Fokker--Planck equations, where each level of the ordered family corresponds to a certain number of particles and each particle represents a molecule. The equations at each level describe the spatial diffusion of the corresponding set of particles, and they are coupled to each other via reaction operators --linear operators representing chemical reactions. These operators change the number of particles in the system, and thus transport probability between different levels in the family. In this work, we present three approaches to formulate the CDME and show the relations between them. We further deduce the non-trivial combinatorial factors contained in the reaction operators, and we elucidate the relation to the original formulation of the CDME, which is based on creation and annihilation operators acting on many-particle probability density functions. Finally we discuss applications to multiscale simulations of biochemical systems among other future prospects.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2024-03-21
    Description: Our theoretical study concerns an urea-urease-based pH oscillator confined to giant lipid vesicles. Under suitable conditions, differential transport of urea and hydrogen ion across the unilamellar vesicle membrane periodically resets the pH clock that switches the system from acid to basic, resulting in self-sustained oscillations. We analyse the structure of the limit cycle, which controls the dynamics for giant vesicles and dominates the strongly stochastic oscillations in small vesicles of submicrometer size. To this end, we derive reduced models, amenable to analytic treatments, and show that the accuracy of predictions, including the period of oscillations, is highly sensitive to the choice of the reduction scheme. In particular, we suggest an accurate two-variable model and show its equivalence to a three-variable model that admits an interpretation in terms of a chemical reaction network. The accurate description of a single pH oscillator appears crucial for rationalizing experiments and understanding communication of vesicles and synchronization of rhythms.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2024-03-26
    Description: Grazing-incidence X-ray diffraction (GIXRD) is a scattering technique which allows one to characterize the structure of fluid interfaces down to the molecular scale, including the measurement of the surface tension and of the interface roughness. However, the corresponding standard data analysis at non-zero wave numbers has been criticized as to be inconclusive because the scattering intensity is polluted by the unavoidable scattering from the bulk. Here we overcome this ambiguity by proposing a physically consistent model of the bulk contribution which is based on a minimal set of assumptions of experimental relevance. To this end, we derive an explicit integral expression for the background scattering, which can be determined numerically from the static structure factors of the coexisting bulk phases as independent input. Concerning the interpretation of GIXRD data inferred from computer simulations, we account also for the finite sizes of the bulk phases, which are unavoidable in simulations. The corresponding leading-order correction beyond the dominant contribution to the scattered intensity is revealed by asymptotic analysis, which is characterized by the competition between the linear system size and the X-ray penetration depth in the case of simulations. Specifically, we have calculated the expected GIXRD intensity for scattering at the planar liquid--vapor interface of Lennard-Jones fluids with truncated pair interactions via extensive, high-precision simulations. The reported data cover interfacial and bulk properties of fluid states along the whole liquid--vapor coexistence line. A sensitivity analysis demonstrates the robustness of our findings concerning the detailed definition of the mean interface position. We conclude that previous claims of an enhanced surface tension at mesoscopic scales are amenable to unambiguous tests via scattering experiments.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2024-03-27
    Description: Molecular dynamics simulations are one of the methods in scientific computing that benefit from GPU acceleration. For those devices, SYCL is a promising API for writing portable codes. In this paper, we present the case study of HAL’s MD package that has been successfully migrated from CUDA to SYCL. We describe the different strategies that we followed in the process of porting the code. Following these strategies, we achieved code portability across major GPU vendors. Depending on the actual kernels, both significant performance improvements and regressions are observed. As a side effect of the migration process, we obtained impressing speedups also for execution on CPUs.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...