Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Electronic Resource
    Electronic Resource
    Springer
    Mathematical programming 59 (1993), S. 361-375 
    ISSN: 1436-4646
    Keywords: Interior point algorithm ; big ℳ ; linear program ; convex program ; complementarity problem ; potential reduction algorithm ; self-dual linear program
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: Abstract When we apply interior point algorithms to various problems including linear programs, convex quadratic programs, convex programs and complementarity problems, we often embed an original problem to be solved in an artificial problem having a known interior feasible solution from which we start the algorithm. The artificial problem involves a constantℳ (or constants) which we need to choose large enough to ensure the equivalence between the artificial problem and the original problem. Theoretically, we can always assign a positive number of the order O(2 L ) toℳ in linear cases, whereL denotes the input size of the problem. Practically, however, such a large number is impossible to implement on computers. If we choose too largeℳ, we may have numerical instability and/or computational inefficiency, while the artificial problem withℳ not large enough will never lead to any solution of the original problem. To solve this difficulty, this paper presents “a little theorem of the bigℳ”, which will enable us to find whetherℳ is not large enough, and to updateℳ during the iterations of the algorithm even if we start with a smallerℳ. Applications of the theorem are given to a polynomial-time potential reduction algorithm for positive semi-definite linear complementarity problems, and to an artificial self-dual linear program which has a close relation with the primal—dual interior point algorithm using Lustig's limiting feasible direction vector.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Springer
    Mathematical programming 61 (1993), S. 263-280 
    ISSN: 1436-4646
    Keywords: Infeasible-interior-point algorithm ; interior-point algorithm ; primal—dual algorithm ; linear program ; large step ; global convergence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: Abstract As in many primal—dual interior-point algorithms, a primal—dual infeasible-interior-point algorithm chooses a new point along the Newton direction towards a point on the central trajectory, but it does not confine the iterates within the feasible region. This paper proposes a step length rule with which the algorithm takes large distinct step lengths in the primal and dual spaces and enjoys the global convergence.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Springer
    Mathematical programming 85 (1999), S. 51-80 
    ISSN: 1436-4646
    Keywords: Key words: interior-point methods – semidefinite programming – semidefinite linear complementarity problem – inexact computation – search direction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Springer
    Mathematical programming 54 (1992), S. 267-279 
    ISSN: 1436-4646
    Keywords: Linear complementarity ; P-matrix ; interior point ; potential function ; linear programming ; quadratic programming
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: Abstract The linear complementarity problem (LCP) can be viewed as the problem of minimizingx T y subject toy=Mx+q andx, y⩾0. We are interested in finding a point withx T y 〈ε for a givenε 〉 0. The algorithm proceeds by iteratively reducing the potential function $$f(x,y) = \rho \ln x^T y - \Sigma \ln x_j y_j ,$$ where, for example,ρ=2n. The direction of movement in the original space can be viewed as follows. First, apply alinear scaling transformation to make the coordinates of the current point all equal to 1. Take a gradient step in the transformed space using the gradient of the transformed potential function, where the step size is either predetermined by the algorithm or decided by line search to minimize the value of the potential. Finally, map the point back to the original space. A bound on the worst-case performance of the algorithm depends on the parameterλ *=λ*(M, ε), which is defined as the minimum of the smallest eigenvalue of a matrix of the form $$(I + Y^{ - 1} MX)(I + M^T Y^{ - 2} MX)^{ - 1} (I + XM^T Y^{ - 1} )$$ whereX andY vary over the nonnegative diagonal matrices such thate T XYe ⩾ε andX jj Y jj⩽n 2. IfM is a P-matrix,λ * is positive and the algorithm solves the problem in polynomial time in terms of the input size, |log ε|, and 1/λ *. It is also shown that whenM is positive semi-definite, the choice ofρ = 2n+ $$\sqrt {2n} $$ yields a polynomial-time algorithm. This covers the convex quadratic minimization problem.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Springer
    Mathematical programming 9 (1975), S. 257-277 
    ISSN: 1436-4646
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: Abstract The nonlinear complementarity problem is the problem of finding a point x in the n-dimensional Euclidean space,R n , such that x ⩾ 0, f(x) ⩾ 0 and 〈x,f(x)∼ = 0, where f is a nonlinear continuous function fromR n into itself. Many existence theorems for the problem have been established in various ways. The aim of the present paper is to treat them in a unified manner. Eaves's basic theorem of complementarity is generalized, and the generalized theorem is used as a unified framework for several typical existence theorems.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Springer
    Mathematical programming 59 (1993), S. 1-21 
    ISSN: 1436-4646
    Keywords: Primal—dual interior point algorithm ; linear program ; large step ; global convergence ; polynomial-time convergence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: Abstract This paper proposes two sets of rules, Rule G and Rule P, for controlling step lengths in a generic primal—dual interior point method for solving the linear programming problem in standard form and its dual. Theoretically, Rule G ensures the global convergence, while Rule P, which is a special case of Rule G, ensures the O(nL) iteration polynomial-time computational complexity. Both rules depend only on the lengths of the steps from the current iterates in the primal and dual spaces to the respective boundaries of the primal and dual feasible regions. They rely neither on neighborhoods of the central trajectory nor on potential function. These rules allow large steps without performing any line search. Rule G is especially flexible enough for implementation in practically efficient primal—dual interior point algorithms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    Springer
    Mathematical programming 15 (1978), S. 223-227 
    ISSN: 1436-4646
    Keywords: Triangulations ; Fixed Point Computing Methods ; Complementary Pivoting Methods ; Piecewise Linear Homotopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: Abstract When we apply the fixed point computing method to mappings which are affine in some variables, we show that, to generate a sequence which converges to a fixed point, the mesh size need not be decreased in these coordinates. This paper modifies the triangulationJ 3 with continuous refinement of mesh size to a triangulation $$\bar J_3$$ such that the mesh size of $$\bar J_3$$ in some given coordinates is constant and the mesh size in the other coordinates shrinks to zero.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Springer
    Mathematical programming 48 (1990), S. 415-435 
    ISSN: 1436-4646
    Keywords: Linear complementarity problem ; ellipsoid ; interior point algorithm ; path following algorithm
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: Abstract This paper deals with the LCP (linear complementarity problem) with a positive semi-definite matrix. Assuming that a strictly positive feasible solution of the LCP is available, we propose ellipsoids each of which contains all the solutions of the LCP. We use such an ellipsoid for computing a lower bound and an upper bound for each coordinate of the solutions of the LCP. We can apply the lower bound to test whether a given variable is positive over the solution set of the LCP. That is, if the lower bound is positive, we know that the variable is positive over the solution set of the LCP; hence, by the complementarity condition, its complement is zero. In this case we can eliminate the variable and its complement from the LCP. We also show how we efficiently combine the ellipsoid method for computing bounds for the solution set with the path-following algorithm proposed by the authors for the LCP. If the LCP has a unique non-degenerate solution, the lower bound and the upper bound for the solution, computed at each iteration of the path-following algorithm, both converge to the solution of the LCP.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    Springer
    Mathematical programming 50 (1991), S. 331-342 
    ISSN: 1436-4646
    Keywords: Potential reduction algorithm ; linear complementarity problem ; interior point algorithm ; Karmarkar's algorithm ; path of centers ; central trajectory
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mathematics
    Notes: Abstract This paper proposes an interior point algorithm for a positive semi-definite linear complementarity problem: find an (x, y)∈ℝ 2n such thaty=Mx+q, (x,y)⩾0 andx T y=0. The algorithm reduces the potential function $$f(x,y) = (n + \sqrt n )\log x^T y - \sum\limits_{i = 1}^n {\log x_i y_i } $$ by at least 0.2 in each iteration requiring O(n 3) arithmetic operations. If it starts from an interior feasible solution with the potential function value bounded by $$O(\sqrt n L)$$ , it generates, in at most $$O(\sqrt n L)$$ iterations, an approximate solution with the potential function value $$ - O(\sqrt n L)$$ , from which we can compute an exact solution in O(n 3) arithmetic operations. The algorithm is closely related with the central path following algorithm recently given by the authors. We also suggest a unified model for both potential reduction and path following algorithms for positive semi-definite linear complementarity problems.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    Springer
    Journal of global optimization 10 (1997), S. 367-380 
    ISSN: 1573-2916
    Keywords: Semidefinite program ; relaxation method ; interior-point method ; nonconvex quadratic program ; linear matrix inequality
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract This paper applies the SDP (semidefinite programming)relaxation originally developed for a 0-1 integer program to ageneral nonconvex QP (quadratic program) having a linear objective functionand quadratic inequality constraints, and presents some fundamental characterizations of the SDP relaxation including its equivalence to arelaxation using convex-quadratic valid inequalities for the feasible regionof the QP.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...