Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The role of E×B flow shear on confinement enhancement in the DIII-D tokamak [Plasma Physics and Controlled Nuclear Fusion Research, 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 159] high internal inductance discharges with high-confinement edge is investigated experimentally using a nonaxisymmetric poloidal magnetic-field perturbation from an external coil to drag down the plasma toroidal rotation. At similar values of internal inductance, discharges which rotate faster and have a stronger E×B flow shear have better confinement. These results indicate that E×B flow shear likely plays an important role in the confinement enhancement of these discharges. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Reliable operation of discharges with negative central magnetic shear has led to significant increases in plasma performance and reactivity in both low confinement, L-mode, and high confinement, H-mode, regimes in the DIII-D tokamak [Plasma Physics and Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 159]. Using neutral beam injection early in the initial current ramp, a large range of negative shear discharges have been produced with durations lasting up to 3.2 s. The total noninductive current (beam plus bootstrap) ranges from 50% to 80% in these discharges. In the region of shear reversal, significant peaking of the toroidal rotation [fφ(0)∼30–60 kHz] and ion temperature [Ti(0)∼15–22 keV] profiles are observed. In high-power discharges with an L-mode edge, peaked density profiles are also observed. Confinement enhancement factors up to H≡τE/τITER-89P∼2.5 with an L-mode edge, and H∼3.3 in an edge localized mode (ELM)-free H mode, are obtained. Transport analysis shows both ion thermal diffusivity and particle diffusivity to be near or below standard neoclassical values in the core. Large pressure peaking in the L mode leads to high disruptivity with βN≡βT/(I/aB)≤2.3, while broader pressure profiles in the H mode gives low disruptivity with βN≤4.2. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Detailed analysis of recent high beta discharges in the DIII-D [Plasma Physics Controlled Nuclear Fusion Research, 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] tokamak demonstrates that the resistive vacuum vessel can provide stabilization of low n magnetohydrodynamic (MHD) modes. The experimental beta values reaching up to βT=12.6% are more than 30% larger than the maximum stable beta calculated with no wall stabilization. Plasma rotation is essential for stabilization. When the plasma rotation slows sufficiently, unstable modes with the characteristics of the predicted "resistive wall'' mode are observed. Through slowing of the plasma rotation between the q=2 and q=3 surfaces with the application of a nonaxisymmetric field, it has been determined that the rotation at the outer rational surfaces is most important, and that the critical rotation frequency is of the order of Ω/2π=1 kHz. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The development of techniques for neoclassical tearing mode (NTM) suppression or avoidance is crucial for successful high beta/high confinement tokamaks. Neoclassical tearing modes are islands destabilized and maintained by a helically perturbed bootstrap current and represent a significant limit to performance at higher poloidal beta. The confinement-degrading islands can be reduced or completely suppressed by precisely replacing the "missing" bootstrap current in the island O-point or by interfering with the fundamental helical harmonic of the pressure. Implementation of such techniques is being studied in the DIII-D tokamak [J. L. Luxon et al., Plasma Physics and Controlled Fusion Research (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 159] in the presence of periodic q=1 sawtooth instabilities, a reactor relevant regime. Radially localized off-axis electron cyclotron current drive (ECCD) must be precisely located on the island. In DIII-D the plasma control system is put into a "search and suppress" mode to make either small rigid radial position shifts of the entire plasma (and thus the island) or small changes in the toroidal field (and, thus, the ECCD location) to find and lock onto the optimum position for complete island suppression by ECCD. This is based on real-time measurements of an m/n=3/2 mode amplitude dBθ/dt. The experiment represents the first use of active feedback control to provide continuous, precise positioning. An alternative to ECCD makes use of the six toroidal section "C-Coil" on DIII-D to provide a large nonresonant static m=1, n=3 helical field to interfere with the fundamental harmonic of an m/n=3/2 NTM. While experiments show success in inhibiting the NTM if a large enough n=3 field is applied before the island onset, there is a considerable plasma rotation decrease due to n=3 "ripple." © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 7 (2000), S. 3349-3359 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The islands from tearing modes driven unstable and sustained by the helically perturbed neoclassical bootstrap current often provide the practical limit to long-pulse, high confinement tokamak operation. The destabilization of such "metastable" plasmas depends on a "seed" island exceeding a threshold. A database from similar regimes [high confinement H-mode with periodic edge localized modes (ELMs) and periodic central sawteeth] was compiled from the tokamaks ASDEX Upgrade (AUG) [Plasma Phys. Controlled Fusion 41, 767 (1999)], DIII-D [Nucl. Fusion 38, 987 (1998)], and JET (Joint European Torus) [Plasma Phys. Controlled Fusion 41, B1 (1999)]. A comparison is made of the measured critical beta for onset of the m/n=3/2 mode (m and n being the poloidal and toroidal Fourier harmonics, respectively) to a model in terms of dimensionless parameters for the seed and threshold islands. This modeling is then used for extrapolation to a reactor-grade tokamak design such as ITER/FDR (International Thermonuclear Experimental Reactor/Final Design Report) [Nucl. Fusion 39, 2137 (1999)]; this indicates that the seed island from sawteeth could be too small to sufficiently disturb the metastable plasma and excite the m/n=3/2 neoclassical tearing mode. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 3 (1996), S. 1524-1529 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The issues concerning the response of a plasma, at or near a singular surface, to a magnetic perturbation with a phase velocity different from the plasma flow velocity, are important for a number of phenomena. Among these are ideal and nonideal magnetohydrodynamic stability of plasmas with shear flow or a flow relative to a resistive wall, sensitivity of rotating plasma to field errors, and the "locked mode'' phenomenon. Models for the singular surface response have been tested against results from "magnetic braking'' experiments in DIII-D [R. J. La Haye et al., Nucl. Fusion 32, 2119 (1992)]. Previous models are found unable to account for all of the experimental observations. A new heuristic nonlinear model presented in the paper may account for the observations. A key element in the model is turbulence developed at the singular surface; the turbulence is assumed driven by the singular layer dissipation and is assumed to impede the singular current through an anomalous resistivity. When the perturbation amplitude is sufficiently large, a positive feedback mechanism exists, since in the regime of interest, dissipation increases with decreasing singular current. For small perturbation amplitudes this mechanism is not operative so that previous models for the response may be valid. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 17
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: "Magnetic braking'' of the plasma toroidal rotation in the high confinement H mode by applied resonant, low m,n=1 static error fields is used in DIII-D [Nucl. Fusion 31, 875 (1991)] as an independent control to evaluate the Er×B stabilization of microturbulence in the plasma core. In the core (ρ(approximately-less-than)0.9) of a tokamak, the radial electric field and its shear are dominated by toroidal rotation. The fundamental quantity for shear stabilization of microturbulence is shear in the velocity of the fluctuations v⊥≈Er×B/B⋅B which in the core is v⊥≈vφBθ/ Bφ. With magnetic braking greatly decreasing the toroidal rotation and thus reducing the core radial electric field and shear, far infrared (FIR) measurements of density microturbulence show downshifting in frequency near ρ≈0.8 as a result of the reduced Doppler shift (ω≈kθEr/Bφ) and a factor of 2 increase in the turbulence level (ñ/n)2 in the period between edge localized modes (ELMs). There is also a large reduction in turbulence at an ELM which tends to compensate for the increase in turbulence with reduced radial electric field shear between ELMs. No significant change is found in H-mode plasma energy, confinement time, internal inductance li, density profile, Te profile, or Ti profile. Good H-mode confinement is maintained by the edge (ρ(approximately-greater-than)0.95) transport barrier where the reversed edge Er and high edge Er shear remain unchanged.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 3 (1991), S. 1650-1656 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The subject of magnetic islands, due to error fields in devices such as tokamaks, is of importance for understanding energy and angular momentum confinement observed in existing devices and for a rational determination of the accuracy required for the coils of future large devices. Simple arguments show that, for parameter values of interest, the viscous drag on plasma inside an island, caused by a toroidal flow of plasma outside the island, can affect the islands significantly. This subject is studied using a numerical implementation of a simple, almost ideal magnetohydrodynamical, two-dimensional model. A simplified version of the model is also studied analytically. The study suggests that the islands shrink somewhat as the drag force is applied and that there is an upper limit to the total drag force that a surface of islands can sustain; when this maximum drag force is approached, large gradients in the current density are formed, which may give rise to instabilities that make invalid the two-dimensional assumption.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 4 (1992), S. 2098-2103 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Otherwise stable discharges can become nonlinearly unstable to disruptive locked modes when subjected to a resonant m=2, n=1 error field from irregular poloidal field coils, as in DIII-D [Nucl. Fusion 31, 875 (1991)], or from resonant magnetic perturbation coils as in COMPASS-C [Proceedings of the 18th European Conference on Controlled Fusion and Plasma Physics, Berlin (EPS, Petit-Lancy, Switzerland, 1991), Vol. 15C, Part II, p. 61]. Experiments in Ohmically heated deuterium discharges with q≈3.5, n¯ ≈ 2 × 1019 m−3 and BT ≈ 1.2 T show that a much larger relative error field (Br21/BT ≈ 1 × 10−3) is required to produce a locked mode in the small, rapidly rotating plasma of COMPASS-C (R0 = 0.56 m, f≈13 kHz) than in the medium-sized plasmas of DIII-D (R0 = 1.67 m, f≈1.6 kHz), where the critical relative error field is Br21/BT ≈ 2 × 10−4. This dependence of the threshold for instability is explained by a nonlinear tearing theory of the interaction of resonant magnetic perturbations with rotating plasmas that predicts the critical error field scales as (fR0/BT)4/3n¯2/3. Extrapolating from existing devices, the predicted critical field for locked modes in Ohmic discharges on the International Thermonuclear Experimental Reactor (ITER) [Nucl. Fusion 30, 1183 (1990)] (f=0.17 kHz, R0 = 6.0 m, BT = 4.9 T, n¯ = 2 × 1019 m−3) is Br21/BT ≈ 2 × 10−5. Such error fields could be produced by shifts and/or tilts of only one of the larger poloidal field coils of as little as 0.6 cm with respect to the toroidal field. A means to increase the rotation frequency would obviate the sensitivity to error fields and increase allowable tolerances on coil construction.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 5 (1993), S. 2428-2436 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Although it has long been suggested that microturbulence is responsible for anomalous transport, relatively little is known about turbulence drive and suppression mechanisms which determine the observed fluctuation levels. In the DIII-D (DIII-D) tokamak [Plasma Physics and Controlled Nuclear Fusion Research, 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 159] during H-mode discharges, microturbulence has been observed to change in two stages. Collective far-infrared scattering has confirmed and quantified a rapid ((approximately-equal-to)100 μsec) suppression of edge microturbulence at the L→H transition, as well as locally increased edge electric field shear, consistent with theoretical models which predict microturbulence suppression due to E×B sheared flow. Additionally, during the subsequent H-mode phase, a slower (10–100 msec) reduction of interior microturbulence is observed, coincident with increased electric field shear and reduced R∇ne in the same region. This reduction is much larger in boronized discharges which also generally have larger rotation velocity. Experiments have been performed whereby the interior radial electric field is reduced while maintaining similar pressure profiles through the use of "magnetic braking'' of toroidal rotation. As expected, the E×B Doppler frequency shift of the scattered fluctuation spectrum decreased as the electric field was reduced. The microturbulence levels were observed to increase when the interior electric field and the associated shear were reduced. Therefore, radial electric field control of microturbulence appears to be a possible route to transport control
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...