Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Electronic Resource
    Electronic Resource
    Springer
    Mathematische Zeitschrift 15 (1922), S. 169-187 
    ISSN: 1432-1823
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Springer
    Naturwissenschaften 53 (1966), S. 200-201 
    ISSN: 1432-1904
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 49 (1977), S. 151-152 
    ISSN: 1432-2242
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 69 (1984), S. 38-38 
    ISSN: 1432-2242
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Springer
    Naturwissenschaften 52 (1965), S. 646-647 
    ISSN: 1432-1904
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    ISSN: 1432-2048
    Keywords: Key words: Chitinase  ;  β-1 ; 3-Glucanase ; α-Manno‐sidase ; Nicotiana ; Protein secretion ; Suspension culture ; Vacuolar enzymes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. We have investigated the possibility that vacuolar proteins can be secreted into the medium of cultured cells of Nicotiana tabacum L. Time-course and balance-sheet experiments showed that a large fraction, up to ca. 19%, of vacuolar α-mannosidase (EC 3.2.1.24) and vacuolar class I chitinase (EC 3.2.1.14) in suspension cultures accumulated in the medium within one week after subculturing. This effect was most pronounced in media containing 2,4-dichlorophenoxyacetic acid (2,4-D). Under comparable conditions only a small fraction, 1.8–5.1% of the total protein and ca. 1% of malate dehydrogenase (EC 1.1.1.37), which is localized primarily in the mitochondria and cytoplasm, accumulated in the medium. Pulse-chase experiments showed that newly synthesized vacuolar class I isoforms of chitinase and β-1,3-glucanase (EC 3.2.1.39) were released into the medium. Post-translational processing, but not the release of these proteins, was delayed by the secretion inhibitor brefeldin A. Only forms of the proteins present in the vacuole, i.e. mature chitinase and pro-β-1,3-glucanase and mature β-1,3-glucanase, were chased into the medium of tobacco cell-suspension cultures. Our results provide strong evidence that vacuolar α-mannosidase, chitinase and β-1,3-glucanase can be secreted into the medium. They also suggest that secretion of chitinase and β-1,3-glucanase might be via a novel pathway in which the proteins pass through the vacuolar compartment.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 17
    ISSN: 1432-2048
    Keywords: Key words:Brassica (germination) – Germination – Globulin breakdown –Phaseolus (germination) – Seedling growth –Vicia (germination)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. The temporal and spatial patterns of storage-globulin mobilization were immunohistochemically pursued in the embryonic axis and cotyledons of vetch seed (Vicia sativa L.) during germination and early seedling growth. Embryonic axes as well as cotyledons of mature seeds contain protein bodies with stored globulins. Prevascular strands of axes and cotyledons, the radicle and epidermal layers of axis organs were nearly exclusively stained by vicilin antibodies whereas the cotyledonous storage mesophyll gave similar staining for vicilin and legumin. Globulin breakdown started locally where growth and differentiation commenced in the axis. There, vicilin mobilization preceded legumin mobilization. Thus vicilin represents the initial source of amino acids for early growth and differentiation processes in vetch. Legumin presumably only serves as a bulk amino acid source for subsequent seedling growth during postgerminative globulin degradation. During the first 2–3 d after the start of imbibition the axis was depleted of globulins whereas no decrease in immunostainability was detected in the cotyledons except in their vascular strands where immunostainability was almost completely lost at this time. Continuous vascular strands were established at the third day when globulin breakdown was finished in the axis but had just started in the cotyledon mesophyll. Protein mobilization proceeded in a small zone from the epidermis towards the vascular strands in the center of the cotyledons. In this zone the storage cells, which initially appeared densely packed with starch grains and protein bodies, concomitantly transformed into cells with a large central vacuole and only a thin cytoplasmic layer attached to the cell wall. These results agree well with the hypothesis that during the first 2 d after imbibition the axis is autonomous in amino acid provision. After the endogenous reserves of the axis are depleted and the conductive tissue has differentiated, globulins are mobilized in the cotyledons, suggesting that then the amino acid supply is taken over by the cotyledons. For comparison with other degradation patterns we used garden bean (Phaseolus vulgaris L) and rape (Brassica napus L.) as reference plants.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 18
    ISSN: 1432-2048
    Keywords: Key words: 2S Globulin ; Narbonin (immunolocalization) ; Seed ; Storage Protein ; Translation (in vitro) ; Vicia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. Narbonin is a 2S protein from the globulin fraction of narbon bean (Vicia narbonensis L.) cotyledons. Its amino acid composition and the pattern of its regulated accumulation in developing seeds led to the suggestion that narbonin could be a storage protein. Therefore, it was expected to be present in protein bodies of the storage tissue cells. Comparison of the cDNA-derived amino acid sequence with a directly determined partial N-terminal sequence revealed that the primary translation product of narbonin mRNA lacks a transient N-terminal signal peptide (V.H. Nong et al., 1995, Plant Mol Biol 28: 61–72). Narbonin polypeptides that had been synthesized in a cell-free translation system supplemented with dog pancreas microsomes were not protected against degradation by posttranslationally added proteases (protease protection assay). In accordance with the lack of a signal peptide this indicates that the polypeptide was not cotranslationally sequestered into the microsomes. The protein-body fraction that had been isolated from mature narbon bean cotyledons by a non-aqueous gradient centrifugation procedure was free of narbonin; this was found in the soluble cell fraction. In electron micrographs, narbonin could be localized in the cytoplasm using the immuno gold-labelling technique. Previously, it had already been shown that narbonin is too slowly degraded during narbon bean germination to act as a storage protein. From all these results it has to be concluded that narbonin is a cytoplasmic protein which does not belong to the storage proteins in the restricted sense. Other possible functions are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    Springer
    Planta 157 (1983), S. 401-410 
    ISSN: 1432-2048
    Keywords: Protein body ; Seed development ; Storage protein ; Vacuole ; Vicia (protein bodies)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Storage proteins of the field bean (Vicia faba L., var. minor, cv. “Fribo”) are synthesized and accumulated in the cotyledons during stage 2 of seed development. Deposition of protein reserves takes place in the protein bodies. The generation of protein bodies was investigated electronmicroscopically using ultra-thin sections as well as the freeze-fracturing technique. During the initial period of storage protein formation, globulins are deposited in large vacuoles which later are transformed to give increasing numbers of small vacuoles with decreasing size. The vacuoles disappear early during the stage of storage protein formation and generate the first protein bodies. During the subsequent period of maximum storage protein formation, which takes place at the rough endoplasmic reticulum (rER), swollen ER strands appear which seem to be entirely filled with protein, and these generate ER-produced protein vacuoles (ERPVAC). The vesicles are transformed in a manner comparable to the vacuoles in the initial period of developmental stage 2 and thus generate the major quantity of protein bodies. Both processes seem to represent only two variants of an uniform mechanism of protein body generation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 20
    ISSN: 1432-2242
    Keywords: cDNA ; Legumin subunits ; Polymorphism ; Gene assignment ; Vicia faba
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Legumin, which amounts to approximately 55% of the seed protein in field beans (Vicia faba L. var. minor), is a representative of the 12S storage globulin family. The 12S storage globulins are hexameric holoprotein molecules composed of different types of polymorphic subunits encoded by a multigene family. ‘Type-A’ legumin subunits contain methionine whereas ‘type-B’ are methionine-free subunits. Sequencing of two different type A-specific cDNAs, as well as an FPLC/HPLC-based improvement of subunit fractionation and peptide mapping with subsequent partial amino-acid sequencing, permit the assignment of some of the polymorphic legumin subunits to members of the multigene family. Two different type A subunits (A1 and A2) correspond to the two different cDNA clones pVfLa129 (A2) and 165 (A1), but microheterogeneity in the amino-acid sequences indicates that polymorphic variants of both representatives of this type may exist. Two groups of published type B-specific gene sequences (LeB7, and LeB2, LeB4, LeB6, respectively) are represented by two polymorphic subunit fractions (B3I, B3II, and B4I, B4II). A seventh clone, LeB3, encodes one of the large legumin subunits that is only a minor component of the legumin seed protein complex.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...