Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Environmental science & technology 24 (1990), S. 23-29 
    ISSN: 1520-5851
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Environmental science & technology 24 (1990), S. 162-169 
    ISSN: 1520-5851
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology ecology 15 (1994), S. 0 
    ISSN: 1574-6941
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract Batch mating experiments were employed to study the kinetics of the conjugal transfer of a TOL plasmid, using the transconjugant strain Pseudomonas aeruginosa PAO 1162 (TOL) as the plasmid donor and Pseudomonas putida PB 2442 and Pseudomonas aeruginosa PAO 1162N as the plasmid recipients. Transfer rates from PAO 1162 (TOL) to PAO 1162N and PB 2442 measured for exponentially grown PAO 1162 (TOL) were 1.81 × 10−14 (standard error (S.E.) 1.25 × 10−15) ml·cell−1min−1 and 3.32 × 10−13 (S.E. 4.42 × 10−14) ml·cell−1min−1, respectively. The instability of the TOL plasmid in PAO 1162 (TOL) was evaluated under conditions that were non-selective for maintenance of the TOL catabolic functions. The measured rates of instability were 6.7 10−6 to 8.3 10−6 min−1, and the loss of the catabolic functions was mainly caused by structural instability of the plasmid.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Springer
    Biodegradation 2 (1991), S. 181-191 
    ISSN: 1572-9729
    Keywords: acrylate ; adsorption ; biodegradation kinetics ; methanogenic consortium ; polyacrylate ; polydisperse ; sand
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Polyacrylate (PA), which is widely used in disposable diapers, is synthesized by polymerization and cross-linking of acrylate. During the synthesis, 3–6% of the polyacrylate polymers is not incorporated into the absorbent material, but remains soluble. If the soluble PA is mobilized from a landfill, it could enter the groundwater. Therefore, the biodegradation and adsorption properties of soluble polymers contained in PA are determined in this study. The soluble PA is highly polydisperse, and the fraction tested has a weight-average molecular-weight of 16,700 and a range extending from 103 to 105. Sand-column tracer tests show that about 1% of the polyacrylate is unadsorbed, but the remainder has a retardation factor that averages at least 58. Biodegradation kinetics are determined in completely mixed biofilm reactors having a methanogenic consortium grown on glucose. The polyacrylate fraction, as well as glucose and acrylate, are removed and mineralized to CO2. The Monod parameters for the polyacrylate are: maximum specific rate of substrate utilization = 0.0016 gC/g biomass-day, and half-maximum-rate concentration = 0.79 gC/m3. Although these kinetics are much slower than for glucose and acrylate, significant degradation and mineralization are observed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    ISSN: 1572-9729
    Keywords: activated sludge ; dichlorophenol ; monooxygenation ; nicotinamide adenine dinucleotide ; phenolics ; specific growth rate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The two-tank accelerator/aerator modification of activated sludge significantly increases the biodegradation of hydrocarbons requiring initial monooxygenation reactions, such as phenol and 2,4-dichlorophenol (DCP). The small accelerator tank has a controlled low dissolved oxygen (DO) concentration that can enrich the biomass in NADH + H+. It also has a very high specific growth rate (μacc) that up-regulates the biomass’s content of the monooxygenase enzyme. Here, we develop and test the ACCEL model, which quantifies all key phenomena taking place when the accelerator/aerator system is used to enhance biodegradation of hydrocarbons requiring initial monooxygenations. Monooxygenation kinetics follow a multiplicative relationship in which the organic substrates (phenol or DCP) and DO have separate Monod terms, while the biomass’s content of NADH + H+ has a first-order term. The monooxygenase enzyme has different affinities (K values) for phenol and DCP. The biomass’s NADH + H+ content is based on a proportioning of NAD(H) according to the relative rates of NADH + H+ sources and sinks. Biomass synthesis occurs simultaneously through utilization of acetate, phenol, and DCP, but each has its own true yield. The ACCEL model accurately simulates all trends for one-tank and two-tank experiments in which acetate, phenol, and DCP are biodegraded together. In particular, DCP removal is affected most by DOacc and the retention-time ratio, Θacc/Θtotal. Adding an accelerator tank dramatically increases DCP removal, and the best DCP removal occurs for 0.2 〈 DOacc  〈 0.5 mg/l and 0.08 〈 Θacc/Θtotal 〈 0.2. The rates of phenol and DCP utilization follow the multiplicative relationship with a maximum specific rate coefficient proportional to μacc. Finally, μacc increases rapidly for Θacc/Θtotal 〈 0.25, acetate removal in the accelerator fuels the high μacc, and the biomass’s NADH + H+ content increases very dramatically for DOacc 〈 0.25 mg/l.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    ISSN: 1572-9729
    Keywords: cometabolism ; cosubstrate ; 4-chlorophenol ; inhibition ; kinetics ; modeling ; monooxygenase ; phenol ; substrate interactions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Batch experiments on the simultaneous utilization of phenol (primary substrate) and 4-chlorophenol (cometabolic secondary substrate) demonstrated two critical substrate interactions. First, the cometabolic degradation of 4-chlorophenol was proportional to the rate of phenol oxidation, which provided the electrons for the initial monooxygenase reaction. Second, 4-chlorophenol inhibited the oxidation of the primary substrate, phenol. Modeling analyses of the degradation of phenol alone and of phenol and 4-chlorophenol together showed that the proportionality between phenol and 4-chlorophenol degradation rates averaged 0.1 mg 4-CP/mg phenol, which corresponds to 0.5% of the electrons generated by phenol oxidation being used as a cosubstrate for the monooxygenase reaction of 4-chlorophenol. In addition, modeling analyses suggest that 4-chlorophenol was a noncompetitive inhibitor of phenol oxidation for high phenol concentrations, but a competitive inhibitor for low phenol concentrations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 17
    ISSN: 1572-9729
    Keywords: aromatics biodegradation ; energetics ; intermediates ; oxygenation ; phenanthrene ; stoichiometry ; yield
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Oxygenation reactions significantly alter the energy and electron flows and, consequently, the overall stoichiometry for the microbial utilization of aromatic compounds. Oxygenation reactions do not yield a net release of electrons, but require an input of electrons to reduce oxygen molecules. The biodegradation pathway of phenanthrene as a model compound was analyzed to determine the impact of oxygenation reactions on overall stoichiometry using the half-reaction method. For individual oxygenation reactions, the half-reaction method for analyzing the electron and energy flows must be modified, because the reactions do not release electrons for synthesis or energy generation. Coupling the oxygenation reaction to subsequent reaction steps provides a net electron release for the coupled reactions. Modeling results indicate that oxygenation reactions increase the oxygen requirement and reduce the cell yield, compared to the conventional mineralization represented by hydroxylation reactions in place of oxygenations. The computed yields considering oxygenation reactions conform better to empirical yields reported in the literature than do yields computed by the hydroxylation single-step methods. The coupled-reaction model also is consistent with information about the ways in which micro-organisms that degrade aromatics accumulate intermediates, regulate degradation genes, and organize enzyme clusters.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Springer
    Biodegradation 10 (1999), S. 315-330 
    ISSN: 1572-9729
    Keywords: biogeochemistry ; biodegradation modeling ; coupled processes ; citrate ; citric acid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A new model, CCBATCH, comprehensively couples microbially catalyzed reactions to aqueous geochemistry. The effect of aqueous speciation on biodegradation reactions and the effect of biological reactions on the concentration of chemical species (e.g. H2CO3, NH 4 + , O2) are explicitly included in CCBATCH, allowing systematic investigation of kinetically controlled biological reactions. Bulk-phase chemical speciation reactions including acid/base and complexation are modeled as thermodynamically controlled, while biological reactions are modeled as kinetically controlled. A dual-Monod kinetic formulation for biological degradation reactions is coupled with stoichiometry for the degradation reaction to predict the rate of change of all biological and chemical species affected by the biological reactions. The capability of CCBATCH to capture pH and speciation effects on biological reactions is demonstrated by a series of modeling examples for the citrate/Fe(III) system. pH controls the concentration of potentially biologically available forms of citrate. When the percentage of the degradable substrate is low due to complexation or acid/base speciation, degradation rates may be slow despite high concentrations of substrate Complexation reactions that sequester substratein non-degradable forms may prevent degradation or stopdegradation reactions prior to complete substrate utilization. The capability of CCBATCH to couple aqueous speciation changes to biodegradation reaction kinetics and stoichiometry allows prediction of these key behaviors in mixed metal/chelate systems.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 19
    ISSN: 1572-9729
    Keywords: acrylate ; adsorption ; biodegradation ; biotic fate ; contact time ; methanogenic consortium ; modeling ; polyacrylate ; polydisperse ; retardation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Soluble polyacrylate (PA), a polydisperse mixture of polyacrylate polymers, is strongly adsorbed and biodegradable. Biotic fate studies were carried out with once-through columns containing sand colonized with anaerobic biomass previously grown in a methanogenic fluidized bed. A fraction of soluble PA having a weight-average molecular weight of 16,700 and a range of molecular weight from 103 to 105 was biologically removed and mineralized to CO2. Due to its polydisperse nature, the breakthrough curve had a gradual increase to an apparent steady-state removal of approximately 60% near one day when the liquid detention time was 21 minutes. Modeling successfully explained the observed breakthrough result when the fraction was divided into components having a wide range of retardation factors (R): about 25% was strongly adsorbed (R=200 and 500), 45% was moderately adsorbed (R=50 and 100), and 30% was weakly adsorbed (R=1–10). In this study, in which active biomass already was present from utilization of a primary substrate (glucose here), equilibrium adsorption increased the time to breakthrough, which also reduced the exiting concentration by increasing the substrate contact time.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    Springer
    Biodegradation 6 (1995), S. 295-308 
    ISSN: 1572-9729
    Keywords: reductive dehalogenation ; kinetics ; modeling ; substrate interactions ; cometabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A kinetic model that describes substrate interactions during reductive dehalogenation reactions is developed. This model describes how the concentrations of primary electron-donor and -acceptor substrates affect the rates of reductive dehalogenation reactions. A basic model, which considers only exogenous electron-donor and -acceptor substrates, illustrates the fundamental interactions that affect reductive dehalogenation reaction kinetics. Because this basic model cannot accurately describe important phenomena, such as reductive dehalogenation that occurs in the absence of exogenous electron donors, it is expanded to include an endogenous electron donor and additional electron acceptor reactions. This general model more accurately reflects the behavior that has been observed for reductive dehalogenation reactions. Under most conditions, primary electron-donor substrates stimulate the reductive dehalogenation rate, while primary electron acceptors reduce the reaction rate. The effects of primary substrates are incorporated into the kinetic parameters for a Monod-like rate expression. The apparent maximum rate of reductive dehalogenation (q m, ap ) and the apparent half-saturation concentration (K ap ) increase as the electron donor concentration increases. The electron-acceptor concentration does not affect q m, ap , but K ap is directly proportional to its concentration.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...