Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 345 (1990), S. 588-588 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 206 (1999), S. 209-210 
    ISSN: 1615-6102
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 2 (1982), S. 405-427 
    ISSN: 0886-1544
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Calmodulin (CaM) isolated from freshwater mussel gill has been shown to be present in fractions derived solely from epithelial cells of whole gill tissue. This CaM has been used to activate bovine brain phosphodiesterase (PDE) and the dose dependence of trifluoperazine-dihydrochloride (TFP)-mediated inhibition of activation has been investigated. The dose-response curve yields an apparent K1 of 20 μM and suggests that at low concentration (up to 40 μM) TFP inhibits PDE activity in the presence of Ca2+, not by direct action on the enzyme, but by a shunt that negates the effect of mussel gill CaM.To determine whether CaM is physiologically significant for ciliary activity in the mussel gill, the effect of TFP upon the Ca2+-dependent ciliary arrest response of the lateral (L) cells of the gill has been examined. Detergent-treated permeabilized epithelial L cell models are scored for ciliary activity after transfer to reactivation solutions that vary in their free Ca2+ and TFP content. At 10-5 M free Ca2+ (pCa 5), maximum recovery from arrest is observed for TFP concentrations in the range of 25 to 30 μM. TFP-mediated recovery from arrest is never complete, suggesting that in the presence of sufficient Ca2+ the drug irreversibly damages a certain fraction of axonemes. At pCa 7 the cilia reactivate and 25-30.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 4 (1984), S. 249-267 
    ISSN: 0886-1544
    Keywords: Paramecium ; trifluoperazine ; cilia ; calmodulin ; calcium ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Trifluoperazine (TFP), a drug that binds to Ca2+-calmodulin (CaM) complexes, altered swimming behavior not only in living paramecia, but also in reactivated, Triton-extracted “models” of the ciliate. By comparing the responses of living cells and models, we have ascertained that two sites of drug action exist in paramecium cilia. Swimming movements were recorded in darkfield stroboscopic flash photomicrographs; this permitted accurate quantitation of velocities and body-shape parameters. When living paramecia were incubated in a standard buffer containing 10 μM TFP, their speed of forward swimming fell over several minutes and their bodies shortened. Untreated paramecia backed up repeatedly and frequently upon transfer to a solution containing barium ions (the “barium dance”), but cells preincubated in TFP did not “dance.” Instead they swam forward slowly for long periods of time without reversing and occasionally then exhibited abnormally prolonged reversals. W7 effects on swimming mimicked low doses of TFP, and the analog W5 did not visibly alter normal swimming patterns. These results suggest that TFP induces a decrease in the intracellular pCa of living paramecia, perhaps by reducing the efficiency of a calmodulin-activated calcium pump in the cell membrane. Paramecia extracted with Triton X-100 and reactivated to swim forward (7 ≥ pCa ≥ 6) were not affected by addition of up to 40 μM TFP to the reactivation medium. We conclude that the main drug effect in living cells is probably not at the axoneme. However, at low pCa, TFP directly affected the ciliary axoneme to shift its behavior to one characteristic of a higher pCa: TFP inhibited backward swimming in models reactivated at pCa 〈 6; instead they swam forward or rocked in place. The mechanism of ciliary reversal in paramecium may therefore depend on an axonemal Ca+-sensor, possibly bound CaM, which is affected by TFP only at low pCa, as has been postulated for other types of cilia.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 12 (1989), S. 1-11 
    ISSN: 0886-1544
    Keywords: ciliary motility ; cAMP ; Ca2+ ; phosphoproteins ; signal transduction ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: This study seeks to identity phosphoproteins in axonemes from Paramecium letraurelia whose phosphorylation responses to adenosine 3′,5′-cyclic monophosphate (cAMP) and Ca2+ parallel responses induced by these agents in ciliary behavior in this cell. In purified rxonemes, over 15 bands ranging from Mr 〉300 kDa to 19 kDa on SDS-PAGE incorporate 32P from adenosine 5′-γ-[32P]tri-phosphate (γ-32P-ATP) at pCa 7 in the absence of cAMP. A major band whose label turns over rapidly was identified at Mr 43 kDa. In the presence of 5 μM cAMP, more than eight bands, but not the Mr 43 kDa band, were labeled additionally or enhanced their labeling. These phosphoproteins and their kinases are structural components of the axoneme. Overall, some of the same major bands are labeled in the presence of cAMP in Triton X-100-permeabilized paramecia that retain their behavioral responses and in axonemes mechanically isolated from these cells. In particular, two major bands have been identified whose phosphorylation is greatly enhanced by cAMP at low concentrations: (1) a 29 kDa polypeptide whose cAMP-dependent phosphorylation is diminished at pCa 4 compared with pCa 7 and (2) a 65 kDa polypeptide whose phosphorylation is pCa insensitive. These polypeptides meet minimal criteria for signal-sensitive regulators of motility parameters in the Paramecium axoneme.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 9 (1988), S. 73-84 
    ISSN: 0886-1544
    Keywords: cilia ; metachronal waves ; electron microscopy ; calcium ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Structural and behavioral features of intact and permeabilized Paramecium tetraurelia have been defined as a basis for study of Ca2+ control of ciliary reversal. Motion analysis of living paramecia shows that all the cells in a population swim forward with gently curving spirals at speeds averaging 369 ± 19 μm/second. Ciliary reversal occurs in 10% of the cell population per second. Living paramecia, quick-fixed for scanning electron microscopy (SEM), show metachronal waves and an effective stroke obliquely toward the posterior end of the cell. Upon treatment with Triton X-100, swimming ceases and both scanning and transmission electron microscopy reveal cilia that uniformly project perpendicularly from the cell surface. Thin sections of these cells indicate that the ciliary, cell, and outer alveolar membranes are greatly disrupted or entirely missing and that the cytoplasm is also disrupted. These permeabilized paramecia can be reactivated and are capable of motility and regulation of motility. Motion analysis of cells reactivated with Mg2+ and ATP in low Ca2+ buffer (pCa7) shows that 71% swim forward in straight or curved paths at speeds averaging 221 ± 20 μm/second. When these cells are quick-fixed for SEM the metachronal wave patterns of living, forward swimming cells reappear. Motion analysis of permeabilized cells reactivated in high Ca2+ buffers (pCa 5.5) shows that 94% swim backward in tight spirals at a velocity averaging 156 ± 7 μm/second. SEM reveals a metachronal wave pattern with an effective stroke toward the anterior region. Although the permeabilized cells do not reverse spontaneously, the pCa response is preserved and the Ca2+ switch remains intact. The ciliary axonemes are largely exposed to the external environment. Therefore, the behavioral responses of these permeabilized cells depend on interaction of Ca2+ with molecules that remain bound to the axonemes throughout the extraction and reactivation procedures.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 32 (1995), S. 121-124 
    ISSN: 0886-1544
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 32 (1995), S. 90-94 
    ISSN: 0886-1544
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 2 (1982), S. 225-228 
    ISSN: 0886-1544
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 1 (1981), S. 303-327 
    ISSN: 0886-1544
    Keywords: cilia ; microtubules ; ATPase ; vanadate ; geometry of sliding ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: A dynein arm attachment cycle produces sliding between adjacent doublet microtubules (N and N + 1) of cilia. In intact axonemes, in the absence of ATP, almost all arms appear attached at both ends (rigor). When ATP is added, most arms detach from doublet N + 1. In ATP and vanadate, the arms do not return to rigor, suggesting that ATP hydrolysis is required for re-extension and reattachment of the dynein arm, but not for detachment. Using solutions containing dynein to decorate dynein-less axonemal doublets, we confirm this interpretation. In the absence of ATP, both sides of each doublet decorate with arms. Addition of ATP, ATP and vanadate or AMP-PNP causes immediate arm detachment, but only in the first instance, where extensive ATP hydrolysis can occur, does decoration eventually reappear. Dynein decorates heterologous axonemal doublets and brain microtubules, as well as homologous doublets, suggesting that this mechanochemical cycle may have general applicability in microtubule-based cell motility.
    Additional Material: 111 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...