Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 29 (1995), S. 1017-1028 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: A study of blood protein adsorption to procoagulant surfaces utilizing a coagulation time assay, contact angles, Wilhelmy balance tensiometry, and electron spectroscopy (ESCA) is presented. Using a new contact angle method of measuring protein adsorption termed “adsorption mapping” it was demonstrated that protein-adsorbent surfaces were inefficient activators of the intrinsic pathway of the plasma coagulation cascade whereas water-wettable, protein-repellent surfaces were efficient procoagulants. Repeated use of fully water-wettable (spreading) glass procoagulants in the coagulation time assay demonstrated that putative “activating sites” were not consumed in the coagulation of platelet-poor porcine plasma. Furthermore, these procoagulant surfaces retained water-wettable surface properties after incubation with blood proteins and saline rinse. The interpretation of these observations was that plasma and serum proteins were not adsorbed to water-wettable surfaces. However, ESCA of these same surfaces revealed the presence of a thin protein layer. Wilhelmy balance tensiometry resolved these seemingly divergent observations by demonstrating that protein was “associated” with a bound hydration layer, but not formally adsorbed through a surface dehydration or ionic interaction mechanism. © 1995 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 40 (1998), S. 92-103 
    ISSN: 0021-9304
    Keywords: blood ; plasma ; coagulation ; mathematical model ; anticoagulation ; thrombin ; thrombin ligand ; DNA ligands ; aptamers ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: A biophysical model linking fibrin polymerization kinetics (following release from a thrombin-fibrinogen complex), coagulation time, and competitive inhibition of thrombin illustrates the utility of thrombin-binding ligands as anticoagulants in blood collection applications. The resulting mathematical relationship connecting fibrinogen, ligand, and thrombin concentrations was tested against experimentally observed anticoagulation of whole, platelet-poor porcine plasma induced by short, single-stranded DNA oligonucleotides originally found to bind thrombin by screening combinatorial libraries. The thrombin-fibrinogen dissociation constant Ks served as the single adjustable parameter in a least-squares fitting of the model to experimental anticoagulation data. Best-fit Ks values corroborated μM values measured in plasma-free systems, and application of the model to a ligand challenge to the intrinsic pathway of plasma coagulation corroborated nM endogenous thrombin concentrations measured in porcine blood activated by endotoxin insult in vivo. The model fit to data suggests that only about 20% conversion of blood fibrinogen to fibrin is required to coagulate (gel) porcine plasma. This prediction is consistent with the common clinical laboratory observation of latent fibrin formation in “serum” separated from blood before fibrinogen is fully converted to fibrin. It was concluded that the thrombin-binding anticoagulation model was a reasonable simulation of the situation in which an initial bolus of either exogenous or endogenous thrombin is rapidly partitioned between fibrinogen-bound and ligand-bound forms with little or no additional free thrombin created over time. © 1998 John Wiley & Sons, Inc. J Biomed Mater Res, 40, 92-103, 1998.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...