Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Material
Person/Organisation
Keywords
Language
  • 21
    Publication Date: 2020-08-05
    Description: This paper provides a generic formulation for rolling stock planning problems in the context of intercity passenger traffic. The main contributions are a graph theoretical model and a Mixed-Integer-Programming formulation that integrate all main requirements of the considered Vehicle-Rotation-Planning problem (VRPP). We show that it is possible to solve this model for real-world instances provided by our industrial partner DB Fernverkehr AG using modern algorithms and computers.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2020-08-05
    Description: Wir stellen einen mathematischen Optimierungsansatz zur integrierten Dienst- und Dienstreihenfolgeplanung im öffentlichen Nahverkehr vor, mit dem sich bei konstanten Personalkosten die Fahrerzufriedenheit deutlich steigern lässt.
    Language: German
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2020-08-05
    Description: In many railway undertakings a railway timetable is offered that is valid for a longer period of time. At DB Fernverkehr AG, one of our industrial partners, this results in a summer and a winter timetable. For both of these timetables rotation plans, i.e., a detailed plan of railway vehicle movements is constructed as a template for this period. Sometimes there are be periods where you know for sure that vehicle capacities are not sufficient to cover all trips of the timetable or to transport all passenger of the trips. Reasons for that could be a heavy increase of passenger flow, a heavy decrease of vehicle availability, impacts from nature, or even strikes of some employees. In such events the rolling stock rotations have to be adapted. Optimization methods are particularly valuable in such situations in order to maintain a best possible level of service or to maximize the expected revenue using the resources that are still available. In most cases found in the literature, a rescheduling based on a timetable update is done, followed by the construction of new rotations that reward the recovery of parts of the obsolete rotations. We consider a different, novel, and more integrated approach. The idea is to guide the cancellation of the trips or reconfiguration of the vehicle composition used to operate a trip of the timetable by the rotation planning process, which is based on the mixed integer programming approach presented in Reuther (2017). The goal is to minimize the operating costs while cancelling or operating a trip with an insufficient vehicle configuration in sense of passenger capacities inflicts opportunity costs and loss of revenue, which are based on an estimation of the expected number of passengers. The performance of the algorithms presented in two case studies, including real world scenarios from DB Fernverkehr AG and a railway operator in North America.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2020-08-05
    Description: In many railway undertakings a railway timetable is offered that is valid for a longer period of time. At DB Fernverkehr AG, one of our industrial partners, this results in a summer and a winter timetable. For both of these timetables rotation plans, i.e., a detailed plan of railway vehicle movements is constructed as a template for this period. Sometimes there are be periods where you know for sure that vehicle capacities are not sufficient to cover all trips of the timetable or to transport all passenger of the trips. Reasons for that could be a heavy increase of passenger flow, a heavy decrease of vehicle availability, impacts from nature, or even strikes of some employees. In such events the rolling stock rotations have to be adapted. Optimization methods are particularly valuable in such situations in order to maintain a best possible level of service or to maximize the expected revenue using the resources that are still available. In most cases found in the literature, a rescheduling based on a timetable update is done, followed by the construction of new rotations that reward the recovery of parts of the obsolete rotations. We consider a different, novel, and more integrated approach. The idea is to guide the cancellation of the trips or reconfiguration of the vehicle composition used to operate a trip of the timetable by the rotation planning process, which is based on the mixed integer programming approach presented in Reuther (2017). The goal is to minimize the operating costs while cancelling or operating a trip with an insufficient vehicle configuration in sense of passenger capacities inflicts opportunity costs and loss of revenue, which are based on an estimation of the expected number of passengers. The performance of the algorithms presented in two case studies, including real world scenarios from DB Fernverkehr AG and a railway operator in North America.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2022-03-14
    Description: Deutsche Bahn (DB) operates a large fleet of rolling stock (locomotives, wagons, and train sets) that must be combined into trains to perform rolling stock rotations. This train composition is a special characteristic of railway operations that distinguishes rolling stock rotation planning from the vehicle scheduling problems prevalent in other industries. DB models train compositions using hyperarcs. The resulting hypergraph models are ad-dressed using a novel coarse-to-fine method that implements a hierarchical column genera-tion over three levels of detail. This algorithm is the mathematical core of DB’s fleet em-ployment optimization (FEO) system for rolling stock rotation planning. FEO’s impact within DB’s planning departments has been revolutionary. DB has used it to support the company’s procurements of its newest high-speed passenger train fleet and its intermodal cargo locomotive fleet for cross-border operations. FEO is the key to successful tendering in regional transport and to construction site management in daily operations. DB’s plan-ning departments appreciate FEO’s high-quality results, ability to reoptimize (quickly), and ease of use. Both employees and customers benefit from the increased regularity of operations. DB attributes annual savings of 74 million euro, an annual reduction of 34,000 tons of CO2 emissions, and the elimination of 600 coupling operations in cross-border operations to the implementation of FEO.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2020-03-09
    Description: This article proposes a Lagrangean relaxation approach to solve integrated duty and vehicle scheduling problems arising in public transport. The approach is based on the proximal bundle method for the solution of concave decomposable functions, which is adapted for the approximate evaluation of the vehicle and duty scheduling components. The primal and dual information generated by the bundle method is used to guide a branch-and-bound type algorithm. Computational results for large-scale real-world integrated vehicle and duty scheduling problems with up to 1,500 timetabled trips are reported. Compared with the results of a classical sequential approach and with reference solutions, integrated scheduling offers remarkable potentials in savings and drivers' satisfaction.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2020-11-13
    Description: In the Capacitated Dial-a-Ride Problem (CDARP) we are given a transportation network and a finite set of transportation jobs. Each job specifies the source and target location which are both part of the network. A server which can carry at most $C$~objects at a time can move on the transportation network in order to process the transportation requests. The problem CDARP consists of finding a shortest transportation for the jobs starting and ending at a designated start location. In this paper we are concerned with the restriction of CDARP to graphs which are simple paths. This setting arises for instance when modelling applications in elevator transportation systems. It is known that even for this restricted class of graphs CDARP is NP-hard to solve. We provide a polynomial time approximation algorithm that finds a transportion of length at most thrice the length of the optimal transportation.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2020-03-09
    Description: Wir beschreiben einen Ansatz zur integrierten Umlauf- und Dienstplanung im öffentlichen Nahverkehr. Der Ansatz zielt auf die Verbesserung des Gesamtwirkungsgrades dieser beiden Planungsschritte und auf die besondere Planungsproblematik im Regionalverkehr. Wir entwickeln dazu mathematische Optimierungstechniken für den Einsatz in den Planungssystemen MICROBUS II und DIVA.
    Keywords: ddc:000
    Language: German
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2020-12-15
    Description: This thesis describes the algorithm IS-OPT that integrates scheduling of vehicles and duties in public bus transit. IS-OPT is the first algorithm which solves integrated vehicle and duty scheduling problems arising in medium sized carriers such that its solutions can be used in daily operations without further adaptions. This thesis is structured as follows: The first chapter highlights mathematical models of the planning process of public transit companies and examines their potential for integrating them with other planning steps. It also introduces descriptions of the vehicle and the duty scheduling problem. Chapter 2 motivates why it can be useful to integrate vehicle and duty scheduling, explains approaches of the literature, and gives an outline of our algorithm IS-OPT. The following chapters go into the details of the most important techniques and methods of IS-OPT: In Chapter 3 we describe how we use Lagrangean relaxation in a column generation framework. Next, in Chapter 4, we describe a variant of the proximal bundle method (PBM) that is used to approximate linear programs occurring in the solution process. We introduce here a new variant of the PBM which is able to utilize inexact function evaluation and the use of epsilon-subgradients. We also show the convergence of this method under certain assumptions. Chapter 5 treats the generation of duties for the duty scheduling problem. This problem is modeled as a resourceconstraint- shortest-path-problem with non-linear side constraints and nearly linear objective function. It is solved in a two-stage approach. At first we calculate lower bounds on the reduced costs of duties using certain nodes by a new inexact label-setting algorithm. Then we use these bounds to speed up a depth-first-search algorithm that finds feasible duties. In Chapter 6 we present the primal heuristic of IS-OPT that solves the integrated problem to integrality. We introduce a new branch-and-bound based heuristic which we call rapid branching. Rapid branching uses the proximal bundle method to compute lower bounds, it introduces a heuristic node selection scheme, and it utilizes a new branching rule that fixes sets of many variables at once. The common approach to solve the problems occurring in IS-OPT is to trade inexactness of the solutions for speed of the algorithms. This enables, as we show in Chapter 7, to solve large real world integrated problems by IS-OPT. The scheduled produced by IS-OPT save up to 5% of the vehicle and duty cost of existing schedules of regional and urban public transport companies.
    Description: Diese Arbeit beschreibt den Algorithmus IS-OPT, welcher der erste Algorithmus ist, der integrierte Umlauf- und Dienstplanungsprobleme für mittelgroße Verkehrsunternehmen löst und dabei alle betrieblichen Einzelheiten berücksichtigt. Seine Lösungen können daher direkt in den täglichen Betrieb übernommen werden. Im ersten Kapitel werden mathematische Modelle für verschiedenen Probleme aus dem Planungsprozess von Nahverkehrsunternehmen beschrieben. Es werden Ansätze zur Integration der einzelnen Probleme untersucht. In diesem Kapitel werden außerdem das Umlauf- und das Dienstplanungsproblem eingeführt. Kapitel 2 motiviert, warum Integration von Umlauf- und Dienstplanung hilfreich ist oder in welchen Fällen sie sogar unabdingbar ist; es gibt einen Überblick über die vorhanden Literatur zur integrierten Umlauf- und Dienstplanung und umreißt unseren Algorithmus IS-OPT. Die weiteren Kapitel behandeln die in IS-OPT verwendeten Methoden: In Kapitel 3 beschreiben wir, wie Spaltenerzeugung für lineare Programme mit Lagrange-Relaxierung und Subgradienten-Verfahren kombiniert werden kann. In Kapitel 4 wird unsere Variante der proximalen Bündelmethode beschrieben. Diese wird benutzt um näherungsweise primale und duale Lösungen von lineare Programmen zu berechnen. Unsere Variante ist angepasst, um auch mit ungenauer Funktionsauswertung und Epsilon-Subgradienten arbeiten zu können. Wir zeigen die Konvergenz dieser Variante unter bestimmten Annahmen. Kapitel 5 behandelt das Erzeugen von Diensten für das Dienstplanungsproblem. Dieses Problem ist als ein Kürzeste-Wege-Problem mit nichtlinearen Nebenbedingungen und fast linearer Zielfunktion modelliert. Wir lösen es, indem zuerst Schranken für die reduzierten Kosten von Diensten, die bestimmte Knoten benutzen, berechnet werden. Diese Schranken werden benutzt, um in einem Tiefensuchalgorithmus den Suchbaum klein zu halten. Im Kapitel 6 präsentieren wir die neu entwickelte Heuristik "Rapid Branching", die eine ganzzahlige Lösung des integrierten Problems berechnet. Rapid Branching kann als eine spezielle Branch-and-Bound-Heuristik gesehen werden, welche die Bündelmethode benutzt. In den Knoten des Suchbaums können mehrere Variablen auf einmal fixiert werden, die mit Hilfe einer Perturbationsheuristik ausgewählt werden. In Kapitel 7 schließlich zeigen wir, daß wir mit IS-OPT auch große Probleminstanzen aus der Praxis lösen können und dabei bis zu 5% der Fahrzeug- und Dienstkosten sparen können.
    Keywords: ddc:510
    Language: English
    Type: doctoralthesis , doc-type:doctoralThesis
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2020-08-05
    Description: Duty rostering problems occur in different application contexts and come in different flavors. They give rise to very large scale integer programs which ypically have lots of solutions and extremely fractional LP relaxations. In such a situation, heuristics can be a viable algorithmic choice. We propose an mprovement method of the Lin-Kernighan type for the solution of duty rostering problems. We illustrate its versatility and solution quality on three different applications in public transit, vehicle routing, and airline rostering with a focus on the management of preferences, fairness, and fatigue, respectively.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...