Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 1995-1999  (3)
Materialart
Erscheinungszeitraum
Jahr
  • 1
    Digitale Medien
    Digitale Medien
    College Park, Md. : American Institute of Physics (AIP)
    Journal of Mathematical Physics 38 (1997), S. 6072-6100 
    ISSN: 1089-7658
    Quelle: AIP Digital Archive
    Thema: Mathematik , Physik
    Notizen: In analogy to Gamow vectors that are obtained from first-order resonance poles of the S-matrix, one can also define higher-order Gamow vectors which are derived from higher-order poles of the S-matrix. An S-matrix pole of r-th order at zR=ER−iΓ/2 leads to r generalized eigenvectors of order k=0,1,...,r−1, which are also Jordan vectors of degree (k+1) with generalized eigenvalue (ER−iΓ/2). The Gamow-Jordan vectors are elements of a generalized complex eigenvector expansion, whose form suggests the definition of a state operator (density matrix) for the microphysical decaying state of this higher-order pole. This microphysical state is a mixture of non-reducible components. In spite of the fact that the k-th order Gamow-Jordan vectors has the polynomial time-dependence which one always associates with higher-order poles, the microphysical state obeys a purely exponential decay law. © 1997 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    College Park, Md. : American Institute of Physics (AIP)
    Journal of Mathematical Physics 36 (1995), S. 2593-2604 
    ISSN: 1089-7658
    Quelle: AIP Digital Archive
    Thema: Mathematik , Physik
    Notizen: The exponential decay (or growth) of resonances provides an arrow of time which is described as the semigroup time evolution of Gamow vector in a new formulation of quantum mechanics. Another direction of time follows from the fact that a state must first be prepared before observables can be measured in it. Applied to scattering experiments, this produces another quantum mechanical arrow of time. The mathematical statements of these two arrows of time are shown to be equivalent. If the semigroup arrow is interpreted as microphysical irreversibility and if the arrow of time from the prepared in-state to its effect on the detector of a scattering experiment is interpreted as causality, then the equivalence of their mathematical statements implies that causality and irreversibility are interrelated. © 1995 American Institute of Physics.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Springer
    International journal of theoretical physics 38 (1999), S. 115-130 
    ISSN: 1572-9575
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Physik
    Notizen: Abstract Intrinsic microphysical irreversibility is thetime asymmetry observed in exponentially decayingstates. It is described by the semigroup generated bythe Hamiltonian H of the quantum physical system, not by the semigroup generated by a Liouvillian Lwhich describes the irreversibility due to the influenceof an external reservoir or measurement apparatus. Thesemigroup time evolution generated by H is impossible in the Hilbert space (HS) theory, which allowsonly time-symmetric boundary conditions and a unitarygroup time evolution. This leads to problems with decayprobabilities in the HS theory. To overcome these and other problems (nonexistence of Dirac kets)caused by the Lebesgue integrals of the HS, one extendsthe HS to a Gel'fand triplet, which contains not onlyDirac kets, but also generalized eigenvectors of the self-adjoint H with complex eigenvalues(ER – iΓ/2) and a Breit-Wignerenergy distribution. These Gamow statesψG have a time-asymmetric exponentialevolution. One can derive the decay probability of the Gamow state into the decay productsdescribed by Λ from the basic formula of quantummechanics ℘(t) = Tr(|ψG ›‹ψG|Λ), which in HS quantum mechanicsis identically zero. From this result one derives the decay rate ℘(t) and all the standard relations between℘(0), Γ, and the lifetimeτR used in the phenomenology of resonancescattering and decay. In the Born approximation oneobtains Dirac's Golden Rule.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...