Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    ISSN: 1365-2036
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Medizin
    Notizen: Thirty-three dyspeptic patients with colonization of Helicobacter pylorl in the gastric antrum were treated with tripotassium dicitrate bismuthate 120 mg q.d.s. for 28 days and metronidazole 250 mg q.d.s for 10 days starting on day 19. Five weeks after cessation of this treatment regimen H. pylori was eradicated in 23 patients. In 8 of the remaining 10 patients, H. pylori had become resistant to metronidazole. In this study resistance was significantly associated with smoking habits, but not with age, bacterial load, gastritis score or alcohol consumption.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    European journal of clinical microbiology & infectious diseases 11 (1992), S. 257-260 
    ISSN: 1435-4373
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Abstract The influence of pefloxacin, 400 mg twice daily for ten days, on microbial colonization resistance was investigated in six healthy volunteers. In three volunteers impairment of colonization resistance was indicated by a significant increase in the faecal concentration of yeasts. In two of them, impairment of colonization resistance was confirmed by facilitation of colonization by a challenge strain ofKlebsiella pneumoniae in the early post-treatment period. It is concluded that pefloxacin impairs colonization resistance in some volunteers. However, during pefloxacin therapy, overgrowth by aerobic bacteria is prevented by the very high antimicrobial concentration in faeces, and after therapy it is prevented by rapid restoration of colonization resistance.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 53 (1997), S. 32-40 
    ISSN: 0006-3592
    Schlagwort(e): expanded-bed reactor ; sulfur ; Thiobacilli ; immobilization ; biofilm ; sludge ; Chemistry ; Biochemistry and Biotechnology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
    Notizen: The performance of a new sulfide-oxidizing, expanded-bed bioreactor is described. To stimulate the formation of well-settleable sulfur sludge, which comprises active sulfide-oxidizing bacterial biomass and elemental sulfur, the aeration of the liquid phase and the oxidation of sulfide to elemental sulfur are spatially separated. The liquid phase is aerated in a vessel and subsequently recirculated to the sulfide-oxidizing bioreactor. In this manner, turbulencies due to aeration of the liquid phase in the bioreactor are avoided. It appeared that, under autotrophic conditions, almost all biomass present in the reactor will be immobilized within the sulfur sludge which consists mainly of elemental sulfur (92%) and biomass (2.5%). The particles formed have a diameter of up to 3 mm and can easily be grinded down. Within time, the sulfur sludge obtained excellent settling properties; e.g., after 50 days of operation, 90% of the sludge settles down at a velocity above 25 m h-1 while 10% of the sludge had a sedimentation velocity higher than 108 m h-1. Because the biomass is retained in the reactor, higher sulfide loading rates may be applied than to a conventional “free-cell” suspension. The maximum sulfide-loading rate reached was 14 g HS- L-1 d-1, whereas for a free-cell suspension a maximum loading rate of 6 g HS- L-1 d-1 was found. At higher loading rates, the upward velocities of the aerated suspension became too high so that sulfur sludge accumulated in the settling zone on top of the reactor. When the influent was supplemented with volatile fatty acids, heterotrophic sulfur and sulfate reducing bacteria, and possibly also (facultatively) heterotrophic Thiobacilli, accumulated within the sludge. This led to a serious deterioration of the system; i.e., the sulfur formed was increasingly reduced to sulfide, and also the formation rate of sulfur sludge declined. © 1997 John Wiley & Sons, Inc.
    Zusätzliches Material: 5 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 47 (1995), S. 327-333 
    ISSN: 0006-3592
    Schlagwort(e): sulphur ; thiosulphate ; Thiobacilli ; fed-batch reactor ; oxygen limitation ; Chemistry ; Biochemistry and Biotechnology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
    Notizen: This study shows that, in a sulphide-oxidizing bioreactor with a mixed culture of Thiobacilli, the formation of sulphur and sulphate as end-products from the oxidation of sulphide can be controiledinstantaneously and reversibiy by the amount of oxygen supplied. It was found that at sulphide loading rates of up to 2.33 mmol7/L · h, both products can be formed already at oxygen concentrations below 0.1 mg/L. Because the microorganisms tend to form sulphate rather than forming sulphur, the oxygen concentration is not appropriate to optimize the sulphur production. Within less than 2 h, the system can be switched reversibly from sulphur to sulphate formation by adjusting the oxygen flow. This is below the minimum doubling time (2.85 h) of, e.g., Thiobacillus neapolitanus and Thiobacillus 0,18 which indicates that one metabolic type of organism can probably perform both reactions. Under highly oxygen-limited circumstances, that is, at an oxygen/sulphide consumption ratio below 0.7 mol · h-1 mol · h-1 thiosulphate is abundantly formed. Because the chemical sulphide oxidation results mainly in the formation of thiosulphate, it is concluded that, under these circumstances, the biological oxidation capacity of the system is lower than the chemical oxidation capacity. The oxidation rate of the chemical sulphide oxidation can be described by a first-order process (k =-0.87 h-1).© 1995 John Wiley & Sons, Inc
    Zusätzliches Material: 8 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 60 (1998), S. 147-155 
    ISSN: 0006-3592
    Schlagwort(e): hydrogen sulfide ; elemental sulfur ; desulfurization ; Thiobacilli ; redox potential ; Chemistry ; Biochemistry and Biotechnology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Werkstoffwissenschaften, Fertigungsverfahren, Fertigung
    Notizen: The investigations described show that the formation of elemental sulfur from the biological oxidation of sulfide can be optimized by controling the redox state of the solution. The nonsoluble sulfur can be removed by gravity sedimentation and re-used as a raw material, i.e., in bioleaching processes. It was shown that, by supplying an almost stoichiometrical amount of oxygen to the recirculated gas phase, the formation of sulfate is minimized. The redox potential is mainly determined by the sulfide concentration because this compound has a high standard exchange current density with the platinum electrode surface. By maintaining a particular redox setpoint value, in fact, the reactor becomes a “sulfide-stat.” It was shown that in a sulfide-oxidizing bioreactor the measured redox potential, using a polished redox electrode, is kinetically determined rather than thermodynamically. The optimal redox value for sulfur formation is between -147 and -137 mV (H2 reference electrode, 30°C, pH 8). The presented results are currently used for controling several full-scale installations, which desulfurize biogas and high-pressure natural gas. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 60: 147-155, 1998.
    Zusätzliches Material: 9 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...