Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (5)
Years
Year
Language
  • 1
    Publication Date: 2023-02-06
    Description: We consider linear parabolic equations on a random non-cylindrical domain. Utilizing the domain mapping method, we write the problem as a partial differential equation with random coefficients on a cylindrical deterministic domain. Exploiting the deterministic results concerning equations on non-cylindrical domains, we state the necessary assumptions about the velocity filed and in addition, about the flow transformation that this field generates. In this paper we consider both cases, the uniformly bounded with respect to the sample and log-normal type transformation. In addition, we give an explicit example of a log-normal type transformation and prove that it does not satisfy the uniformly bounded condition. We define a general framework for considering linear parabolic problems on random non-cylindrical domains. As the first example, we consider the heat equation on a random tube domain and prove its well-posedness. Moreover, as the other example we consider the parabolic Stokes equation which illustrates the case when it is not enough just to study the plain-back transformation of the function, but instead to consider for example the Piola type transformation, in order to keep the divergence free property.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-06
    Description: This article considers non-stationary incompressible linear fluid equations in a moving domain. We demonstrate the existence and uniqueness of an appropriate weak formulation of the problem by making use of the theory of time-dependent Bochner spaces. It is not possible to directly apply established evolving Hilbert space theory due to the incompressibility constraint. After we have established the well-posedness, we derive and analyse a time discretisation of the system.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-01-24
    Description: We develop a functional framework suitable for the treatment of partial differential equations and variational problems posed on evolving families of Banach spaces. We propose a definition for the weak time derivative which does not rely on the availability of an inner product or Hilbertian structure and explore conditions under which the spaces of weakly differentiable functions (with values in an evolving Banach space) relate to the classical Sobolev--Bochner spaces. An Aubin--Lions compactness result in this setting is also proved. We then analyse several concrete examples of function spaces over time-evolving spatial domains and hypersurfaces for which we explicitly provide the definition of the time derivative and verify isomorphism properties with the aforementioned Sobolev--Bochner spaces. We conclude with the formulation and proof of well posedness for a class of nonlinear monotone problems on an abstract evolving space (generalising in particular the evolutionary p-Laplace equation on a moving domain or surface) and identify some additional evolutionary problems that can be appropriately formulated with the abstract setting developed in this work.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-01-24
    Description: We introduce an agent-based model for co-evolving opinions and social dynamics, under the influence of multiplicative noise. In this model, every agent is characterized by a position in a social space and a continuous opinion state variable. Agents’ movements are governed by the positions and opinions of other agents and similarly, the opinion dynamics are influenced by agents’ spatial proximity and their opinion similarity. Using numerical simulations and formal analyses, we study this feedback loop between opinion dynamics and the mobility of agents in a social space. We investigate the behaviour of this ABM in different regimes and explore the influence of various factors on the appearance of emerging phenomena such as group formation and opinion consensus. We study the empirical distribution, and, in the limit of infinite number of agents, we derive a corresponding reduced model given by a partial differential equation (PDE). Finally, using numerical examples, we show that a resulting PDE model is a good approximation of the original ABM.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-09-09
    Description: In particle systems, flocking refers to the phenomenon where particles’ individual velocities eventually align. The Cucker-Smale model is a well-known mathematical framework that describes this behaviour. Many continuous descriptions of the Cucker-Smale model use PDEs with both particle position and velocity as independent variables, thus providing a full description of the particles mean-field limit (MFL) dynamics. In this paper, we introduce a novel reduced inertial PDE model consisting of two equations that depend solely on particle position. In contrast to other reduced models, ours is not derived from the MFL, but directly includes the model reduction at the level of the empirical densities, thus allowing for a straightforward connection to the underlying particle dynamics. We present a thorough analytical investigation of our reduced model, showing that: firstly, our reduced PDE satisfies a natural and interpretable continuous definition of flocking; secondly, in specific cases, we can fully quantify the discrepancy between PDE solution and particle system. Our theoretical results are supported by numerical simulations.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...