Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5028
    Keywords: chloroplast protein synthesis ; D1 ; LSU ; photoinhibition ; translational regulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Transfer of Chlamydomonas reinhardtii cells grown photoautotrophically in low light to higher light intensities has a dramatic transient effect on the differential expression of the two major chloroplast encoded photosynthetic proteins. Synthesis of the D1 protein of Photosystem II increases more than 10-fold during the first six hours in high light (HL), whereas synthesis of the large subunit (LSU) of Rubisco drops dramatically within 15 min and only gradually resumes at about 6 h. Synthesis of the chloroplast-encoded ATP synthaseβ subunit, the nuclear-encoded Rubisco small subunit and the nuclear-encoded β-tubulin is not noticeably affected. Up regulation of psbA mRNA translation accounts for a substantial fraction of the increased D1 synthesis, since accumulation of psbA mRNA increases 4.2- and 6.3-fold less than D1 synthesis at 6 and 18 h in HL. Down-regulation of LSU synthesis is not correlated with a reduction in the steady-state level of the rbcL transcript. Primer extension mapping of the 5' ends of the rbcL mRNAs reveals transcripts with start points located at -93 and -186 relative to the first translated ATG. Transfer of low light (LL)-grown cells to HL temporarily decreases the ratio of the -93 to -186 transcripts, but this ratio normalizes after 6 h in HL, coincident with the recovery in the synthesis of LSU. These several distinct effects of temporary light stress were correlated with a rapid, sustained increase in the reduction state of QA, a transient decline in photosynthetic efficiency, a less rapid drop in total chlorophyll content and a delay in cell division.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5079
    Keywords: chlorophyll fluorescence ; herbicide binding ; photoinhibition ; photosynthesis ; photosystem II ; temperature
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The time courses of some Photosystem II (PS II) parameters have been monitored during in-vivo and in-vitro photoinhibition of spinach chloroplasts, at room temperature and at 10 °C or 0 °C. Exposing leaf discs of low-light grown spinach at 25 °C to high light led to photoinhibition of chloroplasts in-vivo as manifested by a parallel decrease in the number of functional PS II centres, the variable chlorophyll fluorescence at 77K (F v /F m ), and the number of atrazine-binding sites. When the photoinhibitory treatment was given at 10 °C, the former two parameters declined in parallel but the loss of atrazine-binding sites occurred more slowly and to a lesser extent. During in-vitro photoinhibition of chloroplast thylakoids at 25 °C, the loss of functional PS II centres proceeded slightly more rapidly than the loss of atrazine-binding sites, and this difference in rate was further increased when the thylakoids were photoinhibited at 0 °C. During the recovery phase of leaf discs (up to 9 h) the increases in F v /F m preceded that of the number of functional PS II centres, while only a further decline in the number of atrazine-binding sites was observed. The recovery of variable chlorophyll fluorescence and the concentration of functional PS II centres occurred more rapidly at 25 °C than at 10 °C. These results suggest that the photoinhibition of PS II function is a relatively temperature-independent early photochemical event, whereas the changes in the concentration of herbicide-binding sites appear to be a more complex biochemical process which can occur with a delayed time course.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...