Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Occupational Health and Environmental Toxicology  (14)
  • 1
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 14 (1993), S. 503-520 
    ISSN: 0197-8462
    Schlagwort(e): constant temperature ; intracellular recording ; time series ; regression analysis ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Physik
    Notizen: The effects of pulsed microwaves (2.45 GHz, 10 μs, 100 pps, SAR: 81.5 kW/kg peak, 81.5 W/kg average) on membrane input resistance and action potential (AP) interval statistics were studied in spontaneously active ganglion neurons of land snails (Helix aspersa), at strictly constant temperature (20.8±.07°C worst case). Statistical comparison with sham-irradiated neurons revealed a significant increase in the mean input resistance of neurons exposed to pulsed microwaves (P ≪ .05 ). Pulsed microwaves had no visible effect on mean AP firing rate; this observation was confirmed by analysis of interspike intervals (ISIs). Using an integrator model for spontaneously active neurons, we found the net input current to be more variable in neurons exposed to pulsed microwaves. The mean input current was not affected. The standard deviation of ISIs and the autocorrelation of the input current were marginally affected, but these changes were not consistent across neurons. Although the observed effects were less obvious than those reported in other studies, they represent evidence of a direct interaction between neurons and pulsed microwaves, in the absence of macroscopic temperature changes. The data do not suggest a single, specific mechanism for such interaction. © 1993 Wiley-Liss, Inc.
    Zusätzliches Material: 5 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 4 (1983), S. 397-400 
    ISSN: 0197-8462
    Schlagwort(e): acoustical imaging ; microwave-induced acoustics ; pulsed microwaves ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Physik
    Notizen: Pulsed 5.66-GHz microwave energy irradiated a model of a human hand that was positioned above a submerged planar array of 400 hydrophones. Hydrophone response data were analyzed by a computer that graphically reproduced the image.
    Zusätzliches Material: 2 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 5 (1984), S. 323-330 
    ISSN: 0197-8462
    Schlagwort(e): pulsed microwaves ; rat ; blood-brain barrier ; 86Rb permeability ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Physik
    Notizen: Microwaves (pulsed, 2,450 MHz) at an average power density of 3 W/cm2 were applied directly to the head for 5, 10, or 20 min, producing a peak specific absorption rate of 240 W/kg in the brain, which, after a 10-min exposure, resulted in brain temperatures in excess of 43°C. A bolus of 86Rb in isotonic saline was injected intravenously and an arterial sample was collected for 20 s to determine cardiac output. Compared with unexposed controls, uptake of 86Rb increased most in those regions directly in the path of the irradiation, namely, the occipital and parietal cortex, as well as the dorsal hippocampus, midbrain, and basal ganglia. In a separate group of animals, regional brain-vascular spaces were found to increase with brain temperature. These results support previous observations indicating that reliably demonstrable increases of blood-brain barrier permeability are associated with intense, microwave-induced hyperthermia, and that the observed changes are not due to field-specific interaction.
    Zusätzliches Material: 2 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 7 (1986), S. 405-414 
    ISSN: 0197-8462
    Schlagwort(e): temperature ; hyperthermia ; Evans-blue ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Physik
    Notizen: The combined effects of ethanol and microwaves on the permeation of Evans blue dye through the mammalian blood-brain barrier was studied in male Wistar rats. Anesthetized rats were infused through a cannula in the left femoral vein with 0.1, 0.3, 0.5 or 0.7 grams of absolute ethanol per kilogram of body mass. A control group was given 0.7 g/kg of isotonic saline. The left hemisphere of the brain was irradiated by 3.15-GHz microwave energy at 3.0 W/cm2 rms for 15 min. The rat's rectal temperature was maintained at 37.0°C. Immediately after irradiation, 2% Evans blue dye in saline (2.0 ml/kg body mass) was injected through the cannula. The results show that as the quantity of alcohol was increased, the degree of staining was decreased or eliminated. The temperature of the irradiated area of the brain increased for the first 4 to 5 minutes of irradiation and then stabilized for the remainder of the irradiation period. The steady-state temperature was highest in animals receiving saline or the smallest dose of alcohol. As the quantity of alcohol was increased, the steady-state temperature was reduced. These results indicate that ethanol inhibits microwave-induced permeation of the blood-brain barrier through reduced heating of the brain.
    Zusätzliches Material: 5 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 13 (1992), S. 557-565 
    ISSN: 0197-8462
    Schlagwort(e): non-invasive sensing ; remote sensing ; heart rate ; pulse pressure wave ; edema ; respiration rate ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Physik
    Notizen: The ability non-invasively to detect and monitor the movement of tissues and organs from outside the body provides many worthwhile areas of potential biomedical applications. Several non-invasive microwave techniques for contact and remote sensing of circulatory and respiratory movements and volume changes have been developed. In general, these systems consist of a microwave generator, a sampling device, a transmitting-receiving antenna, a set of signal-conditioning and processing devices, and a display unit. They operate at continuous-wave frequencies between 1 and 35 GHz and make use of amplitude and phase information derived from the received signal. The average power density of energy radiated by present systems ranges from approximately 0.001-1.0 mW/cm2. These systems are capable of registering instantaneous changes in fluid volume, pressure pulse, heart rate, and respiration rate in contact with body surface or at distances greater than 30 m, or behind thick layers of non-conductive walls. 1992 Wiley-Liss, Inc.
    Zusätzliches Material: 4 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 13 (1992), S. 115-117 
    ISSN: 0197-8462
    Schlagwort(e): Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Physik
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 13 (1992), S. 119-138 
    ISSN: 0197-8462
    Schlagwort(e): mechanism ; signal-to-noise ratio ; theoretical models ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Physik
    Notizen: Interactions between physical fields and biological systems present difficult conceptual problems. Complete biological systems, even isolated cells, are exceedingly complex. This argues against the pursuit of theoretical models, with the possible consequence that only experimental studies should be considered. In contrast, electromagnetic fields are well understood. Further, some subsystems of cells (viz. cell membranes) can be reasonably represented by physical models. This argues for the pursuit of theoretical models which quantitatively describe interactions of electromagnetic fields with that subsystem. Here we consider the hypothesis that electric fields, not magnetic fields, are the source of interactions, From this it follows that the cell membrane is a relevant subsystem, as the membrane is much more resistive than the intra- or extracellular regions. A general class of interactions is considered: electroconformational changes associated with the membrane. Expected results of such as approach include the dependence of the interaction on key parameters (e.g., cell size, field magnitude, frequency, and exposure time), constraints on threshold exposure conditions, and insight into how experiments might be designed. Further, because it is well established that strong and moderate electric fields interact significantly with cells, estimates of the extrapolated interaction for weaker fields can be sought. By employing signal-to-noise (S/N) ratio criteria, theoretical models can also be used to estimate threshold magnitudes. These estimates are particularly relevant to in vitro conditions, for which most biologically generated background fields are absent. Finally, we argue that if theoretical model predictions are unavailable to guide the selection of experimental conditions, an overwhelmingly large number of different conditions will be needed to find, establish, and characterize bioelectromagnetic effects in an empirical search. This is contrasted with well-established chemical dosimetry, which is much simpler. Because of the large number of possible electromagnetic field conditions, we also conclude that in vitro studies, rather than in vivo studies, should be emphasized in studies aimed at discovering and characterizing mechanisms for bioelectromagnetic effects. 1992 Wiley-Liss, Inc.
    Zusätzliches Material: 4 Tab.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 16 (1995), S. 97-105 
    ISSN: 0197-8462
    Schlagwort(e): atrioventricular block ; heat coagulation ; reversible and irreversible block ; catheter antenna ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Physik
    Notizen: The use of microwave energy for ablation of the atrioventricular (AV) junction was examined in open-chest dogs. Using a specially designed microwave catheter and a 2450 MHz generator, microwave energy was delivered to the AV junction according to one of two protocols. In protocol 1, increasing amounts of energy were delivered until irreversible AV block occurred. In protocol 2, only two applications of energy were used, one at low energy and the other at an energy found to be high enough to cause irreversible AV block. Each dog received between one and six applications of microwave energy. The amount of energy delivered per application ranged from 25.6 to 311.4 J. No AV block was seen at 59.4 ± 28.3 J. Reversible AV block was seen with an energy of 120.6 ± 58 J. Irreversible AV block was seen at 188.1 ± 75.9 J. Irreversible AV block could be achieved in each animal. There was no difference in the energy required to cause irreversible AV block between the two protocols. The tissue temperature measured near the tip of the microwave catheter was correlated with both the amount of energy delivered and the extent of AV block caused. Histologic examination demonstrated coagulation necrosis of the conduction system. Microwave energy is a feasible alternative energy source for myocardial ablation. Since tissue damage is due exclusively to heating and the resulting rise in temperature can be measured, microwave energy may have advantages over currently existing energy sources in terms of both titrating delivered energy and monitoring the extent of tissue destruction. © 1995 Wiley-Liss, Inc.
    Zusätzliches Material: 9 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 9 (1988), S. 141-147 
    ISSN: 0197-8462
    Schlagwort(e): microwave pulses ; acoustic pressure ; speed of propagation ; attenuation coefficient ; frequency spectrum ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Physik
    Notizen: This paper presents direct measurements of acoustic pressure wave propagation in cat brains irradiated with pulsed 2.45-GHz microwaves. Short rectangular microwave pulses (2 μs, 15 kW peak power) were applied singly through a direct-contact applicator located at the occipital pole of a cat's head. Acoustic pressure waves were detected by using a small hydrophone transducer, which was inserted stereotaxically into the brain of an anesthetized animal through a matrix of holes drilled on the skull. The measurements clearly indicate that pulsed microwaves induce acoustic pressure waves which propagate with an acoustic wave velocity of 1523 m/s.
    Zusätzliches Material: 5 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 7 (1986), S. 209-221 
    ISSN: 0197-8462
    Schlagwort(e): brain tissue ; radiofrequency ; radiation ; dosimetry ; calcium ions ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Physik
    Notizen: This paper presents calculations for the electric field and absorbed power density distribution in chick brain tissue inside a test tube, using an off-center spherical model. It is shown that the off-center spherical model overcomes many of the limitations of the concentric spherical model, and permits a more realistic modeling of the brain tissue as it sits in the bottom of the test tube surrounded by buffer solution. The effect of the unequal amount of buffer solution above the upper and below the lower surfaces of the brain is analyzed. The field distribution is obtained in terms of a rapidly converging series of zonal harmonics. A method that permits the expansion of spherical harmonics about an off-center origin in terms of spherical harmonics at the origin is developed to calculate in closed form the electric field distribution. Numerical results are presented for the absorbed power density distribution at a carrier frequency of 147 MHz. It is shown that the absorbed power density increases toward the bottom of the brain surface. Scaling relations are developed by keeping the electric field intensity in the brain tissue the same at two different frequencies. Scaling relations inside, as well as outside, the brain surface are given. The scaling relation distribution is calculated as a function of position, and compared to the scaling relations obtained in the concentric spherical model. It is shown that the off-center spherical model yields scaling ratios in the brain tissue that lie between the extreme values predicted by the concentric and isolated spherical models.
    Zusätzliches Material: 8 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...