Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Polymer and Materials Science  (2)
  • 1
    Digitale Medien
    Digitale Medien
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 13 (1979), S. 921-935 
    ISSN: 0021-9304
    Schlagwort(e): Chemistry ; Polymer and Materials Science
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Medizin , Technik allgemein
    Notizen: Glucose oxidase, catalase, and bovine serum albumin were co-immobilized with glutaraldehyde around a platinum screen or around a single platinum - iridium wire. The potential difference between this dual enzyme electrode and a Ag/AgCl reference electrode was proportional to the logarithm of the glucose concentration over the range from 10 to about 150 mg glucose per 100 ml in buffered solution at pH 7.4 and 37°C. The enzyme electrode responded in serum only if coated with a semipermeable film, such as cellulose acetate, to exclude serum macromolecules. The potentiometric results were similar to those obtained with the two enzymes co-immobilized in polyacrylamide gel around a platinum screen or with only one of the enzymes, glucose oxidase, covalently coupled to a platinum screen. The results so far suggest that these potentiometric enzyme electrodes may have sufficient specificity for glucose for development of a continuous in vivo glucose sensor.
    Zusätzliches Material: 2 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 10 (1976), S. 283-294 
    ISSN: 0021-9304
    Schlagwort(e): Chemistry ; Polymer and Materials Science
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Medizin , Technik allgemein
    Notizen: A new biomaterial containing covalently bound hyaluronidase was prepared. An application of this enzyme membrane is to improve the performance of an implantable fuel cell. Hyaluronic acid is a contributor to the viscosity of tissue fluids but can be a potential fuel source because of its sugar content. The incorporation of immobilized hyaluronidase would not only contribute to a more available fuel supply by splitting hyaluronic acid but, perhaps more importantly, enhance the rate of mass transport of fuel, O2, and reaction products by reducing the viscosity near the electrode membranes. Hyaluronidase was bound to Sepharose gel and its thermoplastic membrane after activation by cyanogen bromide. Fourteen and 22% of the activities were recovered from the gel and membrane, respectively. The activity of the bound enzyme was stable for six months at 0°C. The addition of hyaluronic acid, 1 mg/ml, to a typical implantable type bioautofuel cell in vitro increased external solution viscosity from 1.1 to 2.5-2.8 cP and reduced voltage output under 10 kΩ by 60% in 3 hr. When the hyaluronidase bound membrane was placed at the anode, viscosity of the glucose-hyaluronic acid solution was lowered to 1.8 cP and the cell output increased to the original level of a glucose-fueled cell in 3 hr. Glucosamine-equivalent released from hyaluronic acid at the electrode was 3.1 mg after 22.5 hr. This represents 90% of the theoretical consumption. Restoration of the cell output was probably a combination of the enhanced transport of fuel, O2 and products, and/or appearance of a new fuel, glucosamine-equivalent.
    Zusätzliches Material: 4 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...