Library

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (1)
  • Polymer and Materials Science
  • 1
    ISSN: 0721-3115
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The appearance of a significant deuterium isotope effect during the combustion of the solid HMX compound verifies that the chemical reaction kinetics is a major contributor in determining the experimentally observed or global burn rate. Burn rate comparison of HMX and its deuterium labeled HMX-d8 analogue reveals a primary kinetic deuterium isotope effect (1° KDIE) at 500 psig (3.55 MPa) and l000 psig (6.99 MPa) pressures and selectively identifies covalent carbon-hydrogen bond rupture as the mechanistic step which ultimately controls the HMX bum rate under the static combustion conditions of this experiment. The 1° KDIE value further suggests the rate-limiting C—H bond rupture occurs during the solid state HMX decomposition/deflagration portion of the overall combustion event and is supported by other independently published studies. A possible anomalous KDIE result at 1500 psig (10.4 MPa) is addressed. This condensed phase KDIE approach illustrates a direct link between lower temperature/pressure thermal decomposition and deflagration processes and their potential applicability to the combustion regime. Most importantly, a new general method is demonstrated for mechanistic combustion investigations which selectively permits an in-situ identification of the compound's burn rate-controlling step.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...