Library

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0920-3796
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of fusion energy 16 (1997), S. 25-35 
    ISSN: 1572-9591
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract The ITER magnet system consists of structurally linked sets of toroidal (TF) and poloidal (PF) field coils, central solenoid (CS), and various support structures. The coils are superconducting, force flow Helium cooled with a Kapton-Glass-Epoxy multilayer insulation system. The stored magnetic energy is about 100GJ in the TF system and 20GJ in the PF-CS. Coils and structure are maintained at 4 K by enclosing them in a vacuum cryostat. The cryostat, comprising an outer envelope to the magnets, forms most of the second radioactivity confinement barrier. The inner primary barrier is formed by the vacuum vessel, its ports and their extensions. To keep the machine size within acceptable bounds, it is essential that the magnets are in close proximity to both of the nuclear confinement barriers. The objective of the magnet design is that, although local damage to one of the barriers may occur in very exceptional circumstances, large scale magnet structural or thermal failure leading to simultaneous breaching of both barriers is not credible. Magnet accidents fall into three categories: thermal (which includes arcing arising from insulation failure and local overheating due to discharge failure in the event of a superconductor quench), structural (which includes component mechanical failure arising from material inadequacies, design errors and exceptional force patterns arising from coil shorts or control failures), and fluid (Helium release due to cooling line failure). After a preliminary survey to select initial faults conceivable within the present design, these faults are systematically analyzed to provide an assessment of the damage potential. The results of this damage assessment together with an assessment of the reliability of the monitoring and protective systems, shows that the magnets can operate with the required safety condition.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of fusion energy 16 (1997), S. 19-24 
    ISSN: 1572-9591
    Keywords: ITER ; fusion safety approach ; external events ; seismic design
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract ITER will be the first large-scale tokamak to be designed as a nuclear facility to provide public protection from external hazards such as earthquakes. The design approach for such events has been developed consistent with ITER's moderate hazards and overall safety approach on a basis of the ITER site assumptions. Seismic design is described including selection of ground motions for design purposes, seismic safety requirements, and the seismic classification scheme. The results of preliminary seismic assessments are summarized including the potential for seismically induced plasma vertical displacement events (VDE). Finally, potential facility modifications available to deal with site-specific external hazards are suggested. At the Detailed Design Report stage of the Engineering Design Activity (EDA), it is concluded that ITER has been designed to deal with the site design assumptions for earthquakes and can be designed to safety cope with a range of site-specific external hazards with modest changes to the facility.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...