Library

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 57 (1991), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 67 (1996), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Changes in cerebral cortical adenine nucleotide and adenosine levels during 10-, 20-, or 40-min periods of four-vessel occlusion producing cerebral ischemia in rats and reperfusions of 10, 45, or 90 min were determined to evaluate the effects of ischemia duration on mitochondrial function. Substantial recovery was evident following 10 or 20 min of cerebral ischemia but not, however, after a 40-min period of ischemia. A secondary decline in the cortical levels of ATP became evident following 40 min of cerebral ischemia and 90 min of reperfusion. Longer periods of ischemia may be associated with a loss of adenosine, limiting the resynthesis of ATP during reperfusion. A separate group of rats, resuscitated with 100% O2, demonstrated a more rapid recovery of mitochondrial function compared with animals that received room air during reperfusion following 20 min of cerebral ischemia. No detrimental effects of 100% O2 were observed during the 90-min period of reperfusion, indicating that 100% O2 does not promote early mitochondrial dysfunction.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The effects of selective adenosine receptor agonists [N6-cyclopentyladenosine (CPA) and N-ethylcarboxamidoadenosine (NECA)] and antagonists {8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and 9-chloro-2-(2-furanyl)-5,6-dihydro-1,2,4-triazolo[1,5-c]quinazoline-5-imine (CGS-15943A)} on aspartate and glutamate release from the ischemic rat cerebral cortex were studied with the cortical cup technique. Cerebral ischemia (for 20 min) was elicited by four-vessel occlusion. Excitatory amino acid releases were compared from control ischemic rats and drug-treated rats. Basal levels of aspartate and glutamate release were not greatly affected by pretreatment with the adenosine receptor agonists or antagonists. However, CPA (10−10M) and NECA (10−9M) significantly inhibited the ischemia-evoked release of aspartate and glutamate into cortical superfusates. The ability to block ischemia-evoked release of excitatory amino acids was not evident at higher concentrations of CPA (10−6M) or NECA (10−5M). The selective A1 receptor antagonist DPCPX also had no effect on release when administered at a low dosage (0.01 mg/kg, i.p.) but blocked the ischemia-evoked release of aspartate and glutamate at a higher dosage (0.1 mg/kg). Evoked release was inhibited by the selective A2 receptor antagonist CGS-15943A (0.1 mg/kg, i.p.). Thus, adenosine and its analogs may suppress ischemia-evoked release of excitatory neurotransmitter amino acids via high-affinity A1 receptors, whereas coactivation of lower-affinity A2 receptors may block (or reverse) the A1-mediated response.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 64 (1995), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The present study investigated the effect of the administration of oxypurinol (40 mg/kg), an inhibitor of xanthine oxidase, on adenosine and adenine nucleotide levels in the rat brain during ischemia and reperfusion. The brains of the animals were microwaved before, at the end of a 20-min period of cerebral ischemia, and after 5, 10, 45, and 90 min of reperfusion. Cerebral ischemia was elicited by four-vessel occlusion with arterial hypotension to 45–50 mm Hg. Adenosine and adenine nucleotide levels in the oxypurinol-pretreated (administered intravenously 20 min before ischemia) rats were compared with those in nontreated animals exposed to the same periods of ischemia and reperfusion. Oxypurinol administration resulted in significantly elevated ATP levels at the end of ischemia and 5 min after ischemia, but not at 10 min after ischemia. ADP levels were also elevated, in comparison with those in the control rats, at the end of the ischemic period. Conversely, AMP levels were significantly reduced at the end of ischemia and during the initial (5 min) period of reperfusion. Adenosine levels were lower in oxypurinol-treated rats, during ischemia, and in the initial reperfusion phase. Oxypurinol administration resulted in a significant increase in the energy charge both during ischemia and after 5 min of reperfusion. Physiological indices, namely, time to recovery of mean arterial blood pressure and time to onset of respiration, were also shortened in the oxypurinol-treated animals. These beneficial effects of oxypurinol may have been a result of its purine-sparing (salvage) effects and of its ability to inhibit free radical formation by the enzyme xanthine oxidase. Preservation of high-energy phosphates during ischemia likely contributes to the cerebroprotective potency of oxypurinol.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The effects of a potent adenosine deaminase inhibitor, deoxycoformycin, on purine and amino acid neuro-transmitter release from the ischemic rat cerebral cortex were studied with the cortical cup technique. Cerebral ischemia (20 min) was elicited by four-vessel occlusion. Purine and amino acid releases were compared from control ischemic animals and deoxycoformycin-pretreated ischemic rats. Ischemia enhanced the release of glutamate, aspartate, and γ-aminobutyric acid into cortical perfusates. The levels of adenosine, inosine, hypoxanthine, and xanthine in the same perfusates were also elevated during and following ischemia. Deoxycoformycin (500 μ/kg) enhanced ischemia-evoked release of adenosine, indicating a marked rise in the adenosine content of the interstitial fluid of the cerebral cortex. Inosine, hypoxanthine, and xanthine levels were depressed by deoxycoformycin. Deoxycoformycin pretreatment failed to alter the pattern of amino acid neurotransmitter release from the cerebral cortex in comparison with that observed in control ischemic animals. The failure of deoxycoformycin to attenuate amino acid neurotransmitter release, even though it markedly enhanced adenosine levels in the extracellular space, implies that the amino acid release during ischemia occurs via an adenosine-insensitive mechanism. Inhibition of excitotoxic amino acid release is unlikely to be responsible for the cerebroprotective actions of deoxycoformycin in the ischemic brain.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 39 (1982), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The uptake of Ca2+ by a K+-depolarized rat brain cerebral cortical crude synaptosomal preparation (P2 fraction) was investigated. The characteristics of the Ca2+ uptake system are similar to those observed by other investigators. The preparation is also a suitable model with which to study the effects of adenosine on Ca2+ uptake and neurotransmitter release, as it is generally accepted that K+-evoked Ca2+ uptake is intimately related to depolarization-induced release of neurotransmitters. We have demonstrated that an extracellular receptor is involved in mediating the adenosine-evoked inhibition of K+-evoked Ca2+ uptake. The pharmacological properties of the receptor suggest that it may be similar in some respects to the A2-receptor associated with adenylate cyclase. The adenosine uptake inhibitor, dipyridamole, potentiated the action of adenosine, suggesting that re-uptake is important in controlling the extracellular adenosine concentration and thus in the regulation of the adenosine receptor. The adenosine receptor antagonist theophylline inhibited the effects of adenosine. Calmodulin inhibited K+- evoked uptake of Ca2+ by the synaptosomal fraction.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 35 (1980), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: : Uptake of adenosine, a putative inhibitory transmitter or modulator, was investigated in rat cerebral cortical synaptosomes. The accumulation of [3H]adenosine into synaptosomes, using an adenosine concentration of 10 μ.m, was linear for 30 min at 37°C. The uptake appeared to be mediated by kinetically saturable processes with apparent Km's of 1 μam (“high-affinity A”) and 5 μm (“high-affinity B”), both of which were partially sensitive to the presence of external sodium and calcium ions. Both uptake processes were partially inhibited by 2,4-dinitrophenol, implying the presence of active uptake and diffusional components. A study of the metabolites of adenosine taken up by the two uptake systems indicates that the major metabolites were adenosine and nucleotides. However, adenosine incorporated by the high-affinity A uptake system is more likely to form deaminated metabolites, such as hypoxanthine and inosine, indicating a possible functional difference between the two uptake processes. A detailed comparison of the inhibitory properties of certain adenosine analogues and other pharmacological agents has revealed differences between the two adenosine uptake systems. Since the glial contamination in synaptosomal preparations is well established, one of the uptake systems we observed in the present study might be of glial origin. This notion is supported by the findings that the Km values and kinetic properties of papaverine action in the synaptosomal high-affinity A uptake system are similar to those of astrocytes reported in the literature. In conclusion, the uptake processes of synaptosomal preparations show that accumulation of adenosine into neuronal (and possibly glial) elements may play a major role in regulating the extracellular adenosine concentration. Uptake inhibitors, such as diazepam, may exert, at least in part, their pharmacological actions by interfering with the regulation of extracellular adenosine concentrations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 37 (1981), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The rapid uptake of adenosine into rat brain cortical synaptosomes is mediated by a facilitated diffusion process. The carrier mediated uptake is sensitive to pH and temperature. The average Q10 value for the system is approximately 1.77 and the necessary activation energy (Ea) is estimated to be 8870 cal/mol. These values are essentially in agreement with values reported for adenosine uptake carriers of other tissues. Substrate specificity of the uptake system in the CNS demonstrates that nucleotides do not interact with the carrier until they have been hydrolyzed to nucleosides. Structural modification of the purine moiety at the “2” position did not have a profound effect on the ability of the molecule to serve as a substrate for the uptake system. Competitive inhibition by sulfhydryl reagents, p-chloromercuribenzoate, and N-ethylmaleimide on adenosine uptake suggests a direct involvement of sulfhydryl group(s) in the uptake mechanism. Other purines and pyrimidines also inhibited adenosine uptake, suggesting that a variety of nucleosides can interact with a common carrier system.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 36 (1981), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Adenosine, a putative inhibitory transmitter or modulator in the brain, is rapidly transported by rat cerebral cortical synaptosomes. The uptake may represent a facilitated diffusion process, which is saturable and temperature-dependent. In this study, the uptake process was very rapid, reaching completion within 60 s of incubation at 37°C, and had an apparent Km value of 0.9μM and a Vmax value of 5.26 pmol/mg protein/ 30 s. Over 70% of the adenosine taken up remained unchanged, whereas 14% was metabolized to inosine. Twelve percent of the adenosine was converted to nucleotides. Rapid uptake of adenosine into rat cerebral cortical synaptosomes was partially inhibited by replacing Na+ with choline chloride in the medium. Ca2+ ion is important for the uptake process, as inhibition of adenosine uptake occurs in the presence of either Co2- or EGTA. Rapid uptake of adenosine is apparently mediated by a nucleoside carrier, a conclusion based on its inhibition by a variety of purine and pyrimidine nucleosides. Uptake was inhibited by dipyridamole, hexobendine, papaverine, flurazepam, and morphine. Over 60% of the adenosine taken up by the rapid uptake system (30 s) was released by depolarizing agents. In contrast, only 30% of the adenosine taken up during a 15-min incubation period was released under the same conditions. [3H]Adenosine was the predominant purine released in the presence or absence of depolarizing agents. The basal and KCl-evoked release mechanisms were found to be at least partially Ca2+-dependent, however, the release of adenosine by veratridine was increased in the presence of EGTA. This finding is in agreement with the reported Ca2+-independent release of ATP from brain synaptosomes. The present findings suggest that there are at least two functional pools of adenosine in synaptosomes. Adenosine taken up by different uptake systems may be destined for different uses (metabolism or release) in the neuron.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 12 (1965), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...