Library

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Medical & biological engineering & computing 40 (1992), S. 145-152 
    ISSN: 1741-0444
    Keywords: Brain glioma ; Classification ; Fuzzy rule extraction ; MRI
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract The current pre-operative assessment of the degree of malignancy in brain glioma is based on magnetic resonance imaging (MRI) findings and clinical data. 280 cases were studied, of which 111 were high-grade malignancies and 169 were low-grade, so that regular and interpretable patterns of the relationships between glioma MRI features and the degree of malignancy could be acquired. However, as uncertainties in the data and missing values existed, a fuzzy rule extraction algorithm based on a fuzzy min-max neural network (FMMNN) was used. The performance of a multi-layer perceptron network (MLP) trained with the error back-propagation algorithm (BP), the decision tree algorithm ID3, nearest neighbour and the original fuzzy min-max neural network were also evaluated. The results showed that two fuzzy decision rules on only six features achieved an accuracy of 84.6% (89.9% for low-grade and 76.6% for high-grade cases). Investigations with the proposed algorithm revealed that age, mass effect, oedema, post-contrast enhancement, blood supply, calcification, haemorrhage and the signal intensity of the T1-weighted image were important diagnostic factors.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...