Bibliothek

Sie haben 0 gespeicherte Treffer.
Markieren Sie die Treffer und klicken Sie auf "Zur Merkliste hinzufügen", um sie in dieser Liste zu speichern.
feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 84 (1974), S. 57-68 
    ISSN: 0021-9541
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Notizen: Regulation of the proliferation of transplanted colony forming units (CFUs) was investigated in lethally irradiated mice, pretreated by methods known to accelerate hemopoietic recovery after sublethal irradiation. Prospective recipients were exposed to either hypoxia, vinblastine or priming irradiation and at different intervals thereafter lethally irradiated and transplanted with bone marrow. Repopulation of CFUs was determined by counting the number of splenic colonies in primary recipients or by retransplantation.Regeneration of grafted CFUs was greatly accelerated and their self-renewal capacity increased in mice grafted within two days after hypoxia. Also the number of splenic colonies formed by grafted syngeneic CFUs as well as by C57BL parent CFUs growing in BC3F1 hosts was significantly increased. The effect was not dependent on the seeding efficiency of CFUs and apparently resulted from hypoxia induced changes in the hosts physiological environment. Proliferative capacity of grafted CFUs increased remarkably in hosts receiving vinblastine two or four days prior to irradiation. Priming irradiation given six days before main irradiation accelerated, given two days before impaired regeneration of CFUs. The increased rate of regeneration was not related to the cellularity of hemopoietic organs at the time of transplantation. The growth of CFUs in diffusion chambers implanted into posthypoxic mice was only slightly improved which does indicate that the accelerated regeneration of CFUs in posthypoxic mice is mainly due to the changes in the hemopoietic microenvironment. A short conditioning of transplanted CFUs by host factor(s) was sufficient to improve regeneration. The results might suggest that the speed of hemopoietic regeneration depends on the number of CFUs being induced to proliferate shordy after irradiation, rather than on the absolute numbers of CFUs available to the organism.
    Zusätzliches Material: 1 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...