Library

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 8 (2001), S. 3996-4009 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Interacting drift wave–zonal flow turbulence is examined at the spectral level of description using an extended "predator–prey" model. Analytic solutions that describe both the linear scaling of transport with ion–ion collisionality as well as the saturation regime are obtained for a simple model of drift wave turbulence. A theory of self-regulation in this system is presented. The possibility of bifurcation to a state with higher turbulence level and transport is demonstrated. This bifurcation is associated with the appearance of a condensate solution at the largest scales. The possible relevance of this phenomenon to the bursting events of turbulence and transport recently observed in gyrokinetic simulations of ITG instability is discussed. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: One of the main features of astrophysical shocks is their ability to accelerate particles to extremely high energies. The leading acceleration mechanism, the diffusive shock acceleration, is reviewed. It is demonstrated that its efficiency critically depends on the injection of thermal plasma into acceleration which takes place at the subshock of the collisionless shock structure that, in turn, can be significantly smoothed by energetic particles. Furthermore, their inhomogeneous distribution provides free energy for magnetohydrodynamic (MHD) turbulence regulating the subshock strength and injection rate. Moreover, the MHD turbulence confines particles to the shock front controlling their maximum energy and bootstrapping acceleration. Therefore, the study of the MHD turbulence in a compressive plasma flow near a shock is a key to the understanding of the entire process. The calculation of the injection rate became part of the collisionless shock theory. It is argued that the further progress in diffusive shock acceleration theory is impossible without a significant advance in these two areas of plasma physics. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 3 (1996), S. 1916-1925 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: It is shown that, under very generic assumptions of the nature of plasma turbulence in an inhomogeneous magnetic field, the anomalous particle and energy fluxes, in addition to usual diffusive terms, involve purely convective terms not directly associated with density or temperature gradients. The anomalous convective transport results from the conservation, on turbulent time scale, of adiabatic invariants of particle motion in the inhomogeneous magnetic field and the Liouville-theorem constraint on the microscopic dynamics, thus furnishing the mechanism of the anomalous pinch effect in tokamaks. This theory also predicts an electron-turbulence energy exchange, which can be interpreted as a turbulent enhancement of the electron-ion energy exchange. Collisions introduce important modifications to the turbulent mechanisms of the pinch effect. It is argued that the nondiffusive effects are intrinsic to tokamak transport and should be included in power-balance analyses. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 3 (1996), S. 3745-3753 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The radial structure of tokamak profiles determined by anomalous transport is elucidated by studying the statistical mechanics of a sand pile automaton for which the toppling conditions depend on local gradient, alone. In this representation, the sand pile dynamics is Markovian, and spatial profiles may be obtained from calculated expectation values of the local gradient. The Markovian structure of the dynamics is exploited to analytically derive a local gradient probability distribution function from a generalized kinetic equation. For homogeneous, weak noise, the calculated expectation value of the gradient is well below the marginally stable state. In the over-driven limit (i.e., strong homogeneous noise), a region of super-critical gradient is shown to form near the bottom of the pile. For the case of localized noise, the mean self-organized profile is always sub-critical. These results are consistent with numerical studies of simple automata. Their relevance to and implications for tokamak confinement are discussed. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The linear and nonlinear dynamics of modulational interaction between small-scale drift waves and large-scale trapped ion convective cells are investigated. This example is a paradigm of the more general problem of describing the self-consistent interaction of small-scale fluctuations with mean sheared flows. The growth rate of modulational instability is determined by spectral properties of drift waves and can exceed the linear growth rate of the trapped ion mode. An anisotropic spectrum of drift waves is always modulationally unstable. The spatial orientation of the convective cell pattern and structure (i.e., shear strength) is determined by drift wave spectrum anisotropy and propagation direction. In the presence of a sheared magnetic field, which pins small-scale drift waves to mode rational surfaces, the modulational growth rate becomes intrinsically anisotropic, on account of the modified radial structure of drift waves. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 2 (1995), S. 3685-3695 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A simple dynamic model of spatiotemporally propagating transport barriers and transition fronts from low (L) to high (H) confinement regimes is presented. The model introduces spatial coupling (via transport) into the coupled evolution equations for flow shear and fluctuation intensity, thus coupling the supercritical L to H bifurcation instability to turbulent transport. Hence, fast spatiotemporal front propagation and evolutionary behavior result. The theory yields expressions for the propagation velocity and termination point of an L–H transition front and transport barrier. When the evolution of the pressure gradient, ∇Pi, and the contribution of ∇Pi to sheared electric field, Er′, is included, the ambient pretransition pressure gradient acts as a local source term that drives the evolution of the poloidal velocity shear. The transition may then evolve either as a spatiotemporally propagating front or as a uniform (i.e., nonlocal) fluctuation reduction or quench. The precise route to transition adopted depends on the relative magnitudes of the front transit time, τT, and the fluctuation reduction time, τf, respectively. The relevance of spatiotemporally propagating L–H transition fronts to the very high confinement regime (VH mode) evolution in DIII-D [R. I. Pinsker and the DIII-D Team, Plasma Physics and Controlled Nuclear Fusion Research 1992 (International Atomic Energy Agency, Vienna, 1993), Vol. 1, p. 683] and in the Joint European Torus (JET) [Plasma Physics and Controlled Nuclear Fusion Research 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 1, p. 27] is discussed. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 8 (2001), S. 1553-1558 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A simple criterion that allows one to determine whether or not a given wave spectrum will generate zonal flows, is derived and analyzed. In the context of a coupled drift wave–zonal turbulence, the results are pertinent to the limit of small zonal flow damping, γd→0, in which previous analyses found that the turbulence vanishes. However, the practically important issue of the drift wave amplitude threshold for zonal flow excitation was not resolved. In its formal mathematical appearance, the criterion obtained is similar to the well-known Penrose criterion that is used for stability analysis of stellar distributions and particle distributions in plasmas. By contrast, the derived criterion, being applied to wave quanta rather than to particle distribution, shows that even "normal" (wave density decaying with wave number) distributions with an intensity above the threshold should generate zonal flows. This clearly points at the ubiquity of the latter. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 3 (1996), S. 3023-3031 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A theory of the relaxation dynamics of the radial electric field toward its neoclassical value in the regime of subsonic poloidal rotation is presented. It is shown that the relaxation occurs via damped oscillations on time scales proportional to the ion transit time. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 1 (1994), S. 2700-2710 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The results of detailed numerical studies of phenomena in negative compressibility turbulence with sheared perpendicular (i.e., poloidal) flow are presented. The turbulence model is based on the parallel ion flow gradient instability, a representative paradigm for ion drift waves. Studies of coupled turbulence and mean flow evolution indicate the existence of two distinct nonlinear states. In the first state, saturation occurs via nonlinear transfer to damped high-k modes and sheared flow is heavily damped. In the second state, the turbulence level is controlled by the self-consistently generated sheared flow. Transition between these states is determined by the competition between instability growth and damping of rotation. The dynamics of the observed transition is well described and consistent with a simple set of coupled envelope equations. Modulational interaction between small scale turbulence and large scale m≠0 shear flows is observed, as well.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The equations of ionization for the tokamak edge plasma are described and their influence on the stability mechanisms and fluctuation levels are analyzed. (AIP)
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...