Library

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 79 (1957), S. 63-66 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Analytical chemistry 36 (1964), S. 1957-1961 
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Analytical chemistry 37 (1965), S. 1092-1095 
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant breeding 119 (2000), S. 0 
    ISSN: 1439-0523
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Many economically important traits are inherited quantitatively and are analysed by breeders in replicated field trials. If dense maps are available, chromosomal regions containing quantitative trait loci (QTL) can be identified and this opens up the possibility of preselecting for quantitative traits in the laboratory. In this study, QTL analysis for yield and yield components in sugar beet is used in two different populations tested in several environments in both populations, QTL were detected for all traits investigated, and their predictive value in breeding schemes was analysed by correlating predicted with observed values. Tolerance to Rhizomania, caused by a gene on chromosome 3, was the main source of genotype-environment interaction in one population, allowing selection on a QTL basis within macro-environments with or without Rhizomania infestation, respectively. No clear results were found for the second population tested in environments with and with-out Cercospora infestation. Consequences for breeding strategies are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant breeding 118 (1999), S. 0 
    ISSN: 1439-0523
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: The construction of genetic maps is an expensive and time-consuming process. The breeder is therefore interested in using maps developed from other mapping populations but this is only possible if the genetic structure is similar for the chromosomal regions of interest. In this paper, maps of three populations of sugar beet (Beta vulgaris L.) with common polymorphic marker loci are compared. Maps were constructed with MAPMAKER 3.0 and JOINMAP 2.0. Both mapping programs gave, in general, the same order for common markers. However, the number of common markers was too low to construct a combined map for all chromosomes. For one population, in contrast to the other two, the map constructed with MAPMAKER 3.0 was much longer than that constructed with JOINMAP 2.0.For two of these populations yield traits were also available from different environments. For quantitative trait loci (QTL) analysis of the yield data, the packages MAPMAKER/QTL 1.1 and PLABQTL were used. No QTL common for the two populations could be detected. The program and the version used strongly influenced the estimated positions of QTLs. There was also a strong interaction with environments.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Public Health 9 (1988), S. 123-160 
    ISSN: 0163-7525
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Public Health 1 (1980), S. 163-225 
    ISSN: 0163-7525
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 
ATP, adenosine triphosphate
Km, Michaelis-Menton coefficient
Ca, concentration of CO2 in the air (μmol mol–1)
NAD, oxidized nicotin adenine dinucleotide
NADH, reduced nicotin adenine dinucleotide
NADP, oxidized nicotin adenine phosphate dinucleotide
NADPH, reduced nicotine adenine phosphate dinucleotide
R, rate of respiration per unit DW [μmol g 
DW–1], Rubisco, ribulose-1,5-bisphosphate carboxylase/oxygenase
Vc,max, maximum in vivo rate of carboxylation at Rubisco (μmol m–2 s–1)

There is abundant evidence that a reduction in mitochondrial respiration of plants occurs when atmospheric CO2 (Ca) is increased. Recent reviews suggest that doubling the present Ca will reduce the respiration rate [per unit dry weight (DW)] by 15 to 18%. The effect has two components: an immediate, reversible effect observed in leaves, stems, and roots of plants as well as soil microbes, and an irreversible effect which occurs as a consequence of growth in elevated Ca and appears to be specific to C3 species. The direct effect has been correlated with inhibition of certain respiratory enzymes, namely cytochrome-c-oxidase and succinate dehydrogenase, and the indirect or acclimation effect may be related to changes in tissue composition. Although no satisfactory mechanisms to explain these effects have been demonstrated, plausible mechanisms have been proposed and await experimental testing. These are carbamylation of proteins and direct inhibition of enzymes of respiration. A reduction of foliar respiration of 15% by doubling present ambient Ca would represent 3 Gt of carbon per annum in the global carbon budget.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract. Wild radish plants deprived of, and continuously supplied with solution NO−3 for 7 d following 3 weeks growth at high NO−3 supply were compared in terms of changes in dry weight, leaf area, photosynthesis and the partitioning of carbon and nitrogen (NH2-N and NO−3-N) among individual organs. Initial levels of NO−3-N accounted for 25% of total plant N. Following termination of NO−3 supply, whole plant dry weight growth was not significantly reduced for 3 d, during which time plant NH2-N concentration declined by about 25% relative to NO−3-supplied plants, and endogenous NO−3-N content was reduced to nearly zero. Older leaves lost NO−3 and NH2-N, and roots and young leaves gained NH2-N in response to N stress. Relative growth rate declined due both to decreased net assimilation rate and a decrease in leaf area ratio. A rapid increase in specific leaf weight was indicative of a greater sensitivity to N stress of leaf expansion compared to carbon gain. In response to N stress, photosynthesis per unit leaf area was more severely inhibited in older leaves, whereas weight-based rates were equally inhibited among all leaf ages. Net photosynthesis was strongly correlated with leaf NH2-N concentration, and the relationship was not significantly different for leaves of NO3−-supplied compared to NO−3-deprived plants. Simulations of the time course of NO−3 depletion for plants of various NH2-N and NO−3 compositions and relative growth rates indicated that environmental conditions may influence the importance of NO−3 accumulation as a buffer against fluctuations in the N supply to demand ratio.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 8 (1985), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract Growth-chamber cultivated Raphanus plants accumulate nitrate during their vegetative growth. After 25 days of growth at a constant supply to the roots of 1 mol m−3 (NO−3) in a balanced nutrient solution, the oldest leaves (eight-leaf stage) accumulated 2.5% NO−3-nitrogen (NO3-N) in their lamina, and almost 5% NO3-N in their petioles on a dry weight basis. This is equivalent to approximately 190 and 400 mol−3 m−3 concentration of NO−3 in the lamina and the petiole, respectively, as calculated on a total tissue water content basis. Measurements were made of root NO−3 uptake, NO−3 fluxes in the xylem, nitrate uptake by the mesophyll cells, and nitrate reduction as measured by an in vivo test. NO−3 uptake by roots and mesophyll cells was greater in the light than in the dark. The NO−3 concentration in the xylem fluid was constant with leaf age, but showed a distinct daily variation as a result of the independent fluxes of root uptake, transpiration and mesophyll uptake. NO−3 was reduced in the leaf at a higher rate in the light than in the dark. The reduction was inhibited at the high concentrations calculated to exist in the mesophyll vacuoles, but reduction continued at a low rate, even when there was no supply from the incubation medium. Sixty-four per cent of the NO−3 influx was turned into organic nitrogen, with the remaining NO−3 accumulating in both the light and the dark.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...