Library

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 108 (1998), S. 8114-8122 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: A combined ab initio+nuclear dynamics study is performed to theoretically analyze the intramolecular H-atom transfer process in 5-aminotropolone in both the ground (S0) and first excited (S1) singlet electronic states. A complete active space self-consistent field (CASSCF) method is used to optimize the geometries. Energies are then corrected through the second order Møller–Plesset perturbation theory. These results are used to build up reduced bidimensional energy surfaces so that the nuclear wave functions for the nuclear motions in both electronic states are obtained. In particular we have analyzed the six isotopomers that result from deuteration of the amino and hydroxy groups of 5-aminotropolone. It is found that for symmetric structures (−OH/−NH2, −OH/−ND2, −OD/−NH2, and −OD/−ND2), the two lowest vibrational levels in both S0 and S1 appear as a quasidegenerated tunneling doublet. The tunneling splitting in S0 is much lower so that the doublet at the origin, seen in the fluorescence excitation spectra of 5-aminotropolone, can be entirely assigned to the S1 state. In agreement with the experimental findings, this splitting greatly diminishes when the transferring hydrogen is substituted by a deuterium, whereas deuteration of the amino group produces only a modest decrease of such a splitting. A quite different result is found for the nonsymmetric isotopically substituted structures (−OH/−NHD and −OD/−NHD), as the isotope induced asymmetry, combined with the high energy barrier in the S0 potential energy surface, leads to a complete localization of the two lowest vibrational wave functions in S0. On the other hand, for S1 the asymmetry and energy barriers are low enough so that an important degree of delocalization of the two lowest vibrational wave functions is found. These results are again in agreement with the presence of an isotope induced quartet in the fluorescence excitation spectra of these species. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 107 (1997), S. 6275-6282 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: In this paper we perform ab initio calculations for the stable conformations and the transition states for the isomerization processes in 5-hydroxytropolone in both the ground (S0) and first excited (S1) singlet electronic states. The Hartree–Fock self-consistent field (SCF) level and a complete active space SCF (CASSCF) level for S0 are considered, whereas the configuration interaction all single excitation method (CIS) and the CASSCF levels are used to deal with the S1 state. Energies are reevaluated at all levels through perturbation theory up to second order: Møller–Plesset for the Hartree–Fock and CIS methods, and the CASPT2 method for CAS results. The ab initio results are then used to perform different monodimensional fits to the potential energy surfaces in order to analyze the wave functions for the nuclear motions in both electronic states. Our best results predict that for the S0 state two stable conformers, syn and anti, can exist in thermal equilibrium. In accordance with experimental expectations the syn isomer is the most stable. As for the S1 state, and again in accord with experimental spectroscopical data, the order of stability reverses, the anti being the most stable. A more interesting result is that analysis of the nuclear wave functions shows an important syn–anti mixing in the S1 state that does not appear in S0. This result explains the appearance of syn–anti and anti–syn crossover transitions observed in the electronic spectra of 5-hydroxytropolone so that syn–anti reaction may take place through photoisomerization. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 107 (1997), S. 7266-7274 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The potential-energy hypersurface of the addition reaction OH+C2H4 was partially explored following two different approaches. First, the stationary points were located at the MP2(FULL)/6-31G(d,p) level and then the minimum energy path (MEP) was built starting from the MP2 saddle-point geometry. In order to improve the energetics along the MEP, single-point calculations were carried out at several higher levels, in particular, PMP2, MP4sdtq, PMP4sdtq, and QCIsd(t). In a different approach, the C–O bond length was assumed to provide an accurate parametrization of the reaction path in the vicinity of the transition state. The minimum energy structures at the MP4sdq/6-311+G(d,p) level for 16 points along the RC–O coordinate have been calculated, followed by a generalized normal-mode analysis at the MP2(FULL)/6-311+G(d,p) level for each point. The initial potential information from both approaches was used to calculate canonical variational transition state (CVT) association rate constants for the temperature range 200–1000 K. Our calculations at the PMP4sdtq/6-311+G(d,p)//MP4sdq/6-311+G(d,p)[MP2(FULL)/6-311 +G(d,p)] level reproduce the inverse dependence of the rate constant with temperature at T〈565 K, in agreement with the experimental evidence that this reaction has a negative activation energy at room temperature. The analysis of the enthalpic and entropic contributions to the Gibbs free-energy profile has allowed us to understand those negative values of the activation energy. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 115 (2001), S. 4515-4526 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: In this paper we have carried out a test of current multilevel electronic structure methods to give accurate rate constants for the reactions CHnD4−n+OH→P and for the reaction of methane with OD. These multilevel methods are single-point energy techniques designed as general parametrizations for extrapolation to the full configuration interaction limit and, in some cases, to attain also the infinite basis set limit. By means of variational transition state theory including multidimensional tunneling corrections, the rate constants for these reactions, over a wide range of temperatures, have been computed using two recently developed multicoefficient schemes for extrapolating correlated electronic structure calculations: multicoefficient scaling all correlation (MCSAC) and multicoefficient correlation methods (MCCM). For comparison purposes, we have also evaluated the same rate constants using two other multilevel extrapolation techniques, namely, the multicoefficient quadratic configuration interaction (MC-QCISD) method and the complete basis set extrapolation model for free radicals (CBS-RAD). Two dual-level direct dynamics techniques have been employed within the scheme of variational transition state theory: the interpolated single-point energy corrections (ISPE) and the interpolated optimized corrections (IOC), with the purpose to analyze the importance of correcting a low level potential energy surface with the optimizations of the stationary points carried out at the highest computational level affordable. We have shown that the so-called MCCM-CCSD(T)-1sc multilevel scheme provides the best results for the set of reactions studied. A slight difference from the experimental rate constants still persists, specially at the lowest temperatures, although we think that the best theoretical rate constants of the present paper are accurate enough for most of the practical applications. However, the kinetic isotope effects (KIEs) are not so well reproduced because the deviations of the individual theoretical rate constants from the experimental ones, although being very small, do not go in the same direction and these errors are reinforced when the corresponding KIE is calculated. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 114 (2001), S. 2154-2165 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: In the present work, we have theoretically calculated the rate constants and their temperature dependence for the reactions CHnD4−n+OH→P, and for the reaction of methane with OD, by means of variational transition-state theory plus multidimensional tunneling corrections, at the MP-SAC2//MP2/cc-pVTZ/// and CCSD(T)//MP2/cc-pVTZ/// electronic levels. Also, the newly developed single-point energy interpolation algorithm has been used at the CCSD(T)/aug-cc-pVTZ//MP2/cc-pVTZ and CCSD(T)-SAC//MP2/cc-pVTZ levels. For reactions with n=1, 2 or 3, the competitive canonical unified statistical theory has been applied as they involve more than one nonequivalent reaction channel. Variational effects and tunneling have been found to be very important. The proton shift classical energy barrier turns out to be 5.83 and 4.97 kcal/mol at the CCSD(T)/aug-cc-pVTZ//MP2/cc-pVTZ and CCSD(T)-SAC//MP2/cc-pVTZ levels, respectively. Even though we have used the highest ab initio electronic level reported up to now for dynamics calculations on these reactions, and although our results are quite good, we still do not match exactly the available experimental data. From our results it can be inferred that, probably, an adiabatic energy maximum between the CCSD(T)-SAC//MP2/cc-pVTZ and CCSD(T)/aug-cc-pVTZ//MP2/cc-pVTZ values (5.6 and 6.2 kcal/mol, respectively, for the perprotio reaction) could be the most feasible, and that the description of the adiabatic profile fails especially in that region away from the transition-state location but crucial for tunneling corrections. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 93 (1990), S. 5685-5692 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: One-dimensional and bidimensional tunneling splittings have been calculated in malonaldehyde (MA) and hydrogenoxalate anion (HX) systems. Two different monodimensional paths have been considered: the intrinsic reaction path (IRP) and the linear reaction path (LRP). A bidimensional model that includes the coupling between the proton transfer motion and the vibration of the heavy atoms is then used. We find that with the bidimensional model the splittings are 2 orders of magnitude greater than the monodimensional ones, and close to the previous experimental and theoretical values for the MA when zero point energy is introduced. At all levels of calculation we obtain that the splitting is greater in the MA than in the HX. This fact is attributed to the different size of the rings through which the proton transfer occurs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 113 (1991), S. 8970-8972 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 114 (1992), S. 2072-2076 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 116 (1994), S. 10117-10123 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 92 (1988), S. 4180-4184 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...