Library

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 52 (1989), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The spontaneous and potassium-stimulated release of endogenous taurine and γ-aminobutyric acid (GABA) from cerebral cortex and cerebellum slices from adult and developing mice was studied in a superfusion system. The spontaneous release of GABA was of the same magnitude in slices from adult and developing mice, but the spontaneous release of taurine was considerably greater in the adults. The potassium-stimulated release of GABA from cerebral cortex slices was about five times greater in adult than in 3-day-old mice, but the potassium-stimulated release of taurine was more than six times greater in 3-day-old than in adult mice. In cerebellar slices from 7-day-old mice, potassium stimulation also evoked a massive release of taurine, whereas the evoked release from slices from adult mice was rather negligible. Also in cerebellar slices the potassium-stimulated release of GABA exhibited the opposite quantitative pattern. The stimulated release of both GABA and taurine was partially calcium dependent. The results suggest that taurine may be an important regulator of excitability in the developing brain.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Neurochemical research 13 (1988), S. 1027-1034 
    ISSN: 1573-6903
    Keywords: Neurotransmission ; GABA ; dipeptides ; chloride flux
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The effects of endogenous and synthetic peptides containing GABA or its analogues on the GABA/benzodiazepine/chloride ionophore, complex, GABAB receptor, Cl fluxes, GABA release and GABA uptake were studied using synaptic membranes, crude synaptoneurosomal preparations and slices prepared from the rat and mouse brain. The sodium-independent binding of GABA was strongly inhibited by GABA-histidine, followed by γ-glutamyl-homotaurine, GABA-glycine and γ-glutamyl-GABA. The binding of diazepam was slightly enhanced by the same peptides. The peptides alone had no effect on the chloride fluxes, but GABA-histidine, γ-glutamyl-GABA and GABA-glycine enhanced while γ-glutamyl-homotaurine and GABA-taurine inhibited GABA-stimulated chloride uptake. GABA-histidine was the most effective displacer of baclofen binding, but γ-glutamyl-homotaurine was entirely ineffective. The uptake of GABA was markedly inhibited in synaptosomal preparations by GABA-histidine, while all other peptides were less effective. γ-Glutamyl-taurine attenuated but γ-glutamyl-homotaurine and GABA-glycine enhanced the potassium-stimulated release of GABA. The present actions of GABA-histidine in vitro may be of significance for GABAergic neurotransmission in vivo.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Neurochemical research 19 (1994), S. 77-82 
    ISSN: 1573-6903
    Keywords: Taurine ; uptake ; release ; cat brain slices ; synaptosomes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Taurine is an important modulator of neuronal activity in the immature brain. In kittens, taurine deficiency causes serious dysfunction in the cerebellar and cerebral visual cortex. The processes of taurine transport in vitro were now studied for the first time in different brain areas in developing and adult cats. The uptake of taurine consisted initially of two saturable components, high- and low-affinity, in synaptosomal preparations from the developing cerebral cortex and cerebellum, but the high-affinity uptake component completely disappeared during maturation. The release of both endogenous and preloaded labeled taurine from brain slices measured in a superfusion system was severalfold stimulated with a slow onset by depolarizing K+ (50 mM) concentrations. K+ stimulation released markedly more taurine from the cerebral cortex, cerebellum and brain stem in kittens than in adult cats. The responses were largest in the cerebellum. Both uptake and release of taurine are thus highly efficient in the brain of kittens and may be of significance in view of the vulnerability of cats to taurine deficiency.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Neurochemical research 25 (2000), S. 1067-1072 
    ISSN: 1573-6903
    Keywords: Taurine release ; ischemia ; glutamate receptors ; hippocampus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Metabotropic glutamate receptors have recently been envisaged as involved in both potentiation and prevention of ischemic and excitotoxic neuronal damage. The release of the inhibitory amino acid taurine is markedly enhanced in ischemia in both the immature and mature mouse hippocampus. The modulation of [3H]taurine release by metabotropic receptor agonists and antagonists was studied in hippocampal slices from developing (7-day-old) and adult (3-month-old) mice using a superfusion system. Agonists of group I, II and III metabotropic glutamate receptors generally reduced the ischemia-induced release in adult animals. In the immature hippocampus the group I agonists (S)-3,5-dihydroxyphenylglycine and (1±)-1-aminocyclopentane-trans-1,3-dicarboxylate, which mainly enhance neuronal excitation, potentiated initial taurine release in ischemia. Ionotropic glutamate receptor agonists also enhance the ischemia-induced taurine release in developing mice. This glutamate-activated taurine release may thus constitute an important protective mechanism against excitotoxicity in the immature hippocampus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-6903
    Keywords: Hippocampal slices ; developing and adult mice ; hypoxia ; ischemia ; free radicals ; release processes ; amino acid transmitters ; taurine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The releases of endogenous glutamate, aspartate, GABA and taurine from hippocampal slices from 7-day-, 3-, 12-, and 18-month-old mice were investigated under cell-damaging conditions using a superfusion system. The slices were superfused under hypoxic conditions in the presence and absence of glucose and exposed to hydrogen peroxide. In the adult hippocampus under normal conditions the basal release of taurine was highest, with a response only about 2-fold to potassium stimulation (50 mM). The low basal releases of glutamate, aspartate, and GABA were markedly potentiated by K+ ions. In general, the release of the four amino acids was enhanced under all above cell-damaging conditions. In hypoxia and ischemia (i.e., hypoxia in the absence of glucose) the release of glutamate, aspartate and GABA increased relatively more than that of taurine, and membrane depolarization by K+ markedly potentiated the release processes. Taurine release was doubled in hypoxia and tripled in ischemia but K+ stimulation was abolished. In both the mature and immature hippocampus the release of glutamate and aspartate was greatly enhanced in the presence of H2O2, that of aspartate particularly in developing mice. In the immature hippocampus the increase in taurine release was 10-fold in hypoxia and 30-fold in ischemia, and potassium stimulation was partly preserved. The release processes of the four amino acids in ischemia were all partially Ca2+-dependent. High concentrations of excitatory amino acids released under cell-damaging conditions are neurotoxic and contribute to neuronal death during ischemia. The substantial amounts of the inhibitory amino acids GABA and taurine released simultaneously may constitute an important protective mechanism against excitatory amino acids in excess, counteracting their harmful effects. In the immature hippocampus in particular, the massive release of taurine under cell-damaging conditions may have a significant function in protecting neural cells and aiding in preserving their viability.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-6903
    Keywords: Glutamate receptors ; glutathione derivatives ; ligand binding ; Ca2+ influx
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The effects of glutathione, glutathione sulfonate and S-alkyl derivatives of glutathione on the binding of glutamate and selective ligands of ionotropic N-methyl-D-aspartate (NMDA) and non-NMDA receptors were studied with mouse synaptic membranes. The effects of glutathione and its analogues on 45Ca2+ influx were also estimated in cultured rat cerebellar granule cells. Reduced and oxidized glutathione, glutathione sulfonate, S-methyl-, -ethyl-, -propyl-, -butyl- and -pentylglutathione inhibited the Na+-independent binding of L-[3H]glutamate. They strongly inhibited also the binding of (S)-2-amino-3-hydroxy-5-[3H]methyl-4-isoxazolepropionate [3H]AMPA (IC50 values: 0.8–15.9 μM). S-Alkylation of glutathione rendered the derivatives unable to inhibit [3H]kainate binding. The NMDA-sensitive binding of L-[3H]glutamate and the binding of 3-[(R)-2-carboxypiperazin-4-yl][1,2-3H]propyl-1-phosphonate ([3H]CPP, a competitive antagonist at NMDA sites) were inhibited by the peptides at micromolar concentrations. The strychnine-insensitive binding of the NMDA coagonist [3H]glycine was attenuated only by oxidized glutathione and glutathione sulfonate. All peptides slightly enhanced the use-dependent binding of [3H]dizocilpine (MK-801) to the NMDA-gated ionophores. This effect was additive with the effect of glycine but not with that of saturating concentrations of glutamate or glutamate plus glycine. The glutamate- and NMDA-evoked influx of 45Ca2+ into cerebellar granule cells was inhibited by the S-alkyl derivatives of glutathione. We conclude that besides glutathione the endogenous S-methylglutathione and glutathione sulfonate and the synthetic S-alkyl derivatives of glutathione act as ligands of the AMPA and NMDA receptors. In the NMDA receptor-ionophore these glutathione analogues bind preferably to the glutamate recognition site via their γ-glutamyl moieties.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-6903
    Keywords: Lamotrigine ; carbamazepine ; D-aspartate release ; veratridine ; potassium stimulation ; nitric oxide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The effects of lamotrigine and carbamazepine on the release of preloaded D-[3H]aspartate and the involvement of nitric oxide were studied with mouse cerebral cortical slices in a superfusion system. Lamotrigine inhibited the veratridine-evoked release, whereas the K+-stimulated release was attenuated more strongly by carbamazepine than by lamotrigine. These effects were accentuated by the N-methyl-D-aspartate receptor antagonist L-2-amino-5-phosphonovalerate and the nitric oxide synthase inhibitor L-nitroarginine, but diminished by the nitric oxide donor sodium nitroprusside. The results show that in addition to the blockade of voltage-sensitive Na+ (and Ca2+) channels, NO-mediated mechanisms are probably involved in the anticonvulsant actions of carbamazepine and, in particular, those of lamotrigine.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-6903
    Keywords: Hepatic encephalopathy ; thioacetamide ; cerebral cortex ; GABA release
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The release of newly loaded [3H]GABA was studied in slices of different brain regions derived from rats in which acute hepatic encephalopathy (HE) was induced with a hepatotoxin thioacetamide. HE increased both spontaneous and high (50 mM) ammonium chloride-evoked GABA release in cerebral cortical slices by 38% and 50%, respectively. No effects of HE were noted in cerebellar or striatal slices. An increased release of GABA in the cerebral cortex may contribute to the endogenous benzodiazepine-mediated enhancement of GABAergic tone, which is thought to be partly responsible for the pathophysiological mechanism of HE.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-6903
    Keywords: Hepatic encephalopathy ; brain slices ; striatum ; frontal cortex ; glutamate receptors ; dopamine release
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The effects of depolarizing stimuli; high (50 mM) potassium ions and the glutamate receptor agonists N-methyl-D-aspartate, kainate and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) on the release of newly-loaded [3H]dopamine were studied in frontal cortical and striatal slices from control rats and from rats with acute hepatic encephalopathy induced with a hepatotoxin, thioacetamide. Hepatic encephalopathy enhanced the stimulatory effect of potassium ions by 20% in striatal slices and by 34% in frontal cortical slices. In striatal slices the stimulatory effects of N-methyl-D-aspartate and kainate were depressed in hepatic encephalopathy by 46% and 21%, respectively, which may be taken to reflect impaired modulation of striatal dopamine release by glutamate acting at N-methyl-D-aspartate or kainate receptors. In frontal cortical slices, the stimulatory effect of kainate was enhanced by 35% in hepatic encephalopathy but N-methyl-D-aspartate-stimulated release was not affected. The release evoked by 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate was not affected in hepatic encephalopathy in either brain region. Stimulation of dopamine release in the frontal cortex by depolarization or glutamate acting at kainate receptors could inhibit the activity of descending corticostriatal glutamatergic pathways, further impairing regulation of dopamine release by glutamate in the stratum.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Neurochemical research 24 (1999), S. 1009-1016 
    ISSN: 1573-6903
    Keywords: D-aspartate release ; hippocampal slices ; ischemia ; cell-damaging conditions ; metabolic poisons ; mouse
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The release of preloaded D-[3H]aspartate, an unmetabolizable analogue of L-glutamate, was studied in superfused hippocampal slices from 7-day-old and 3-month-old (adult) mice under various cell-damaging conditions, including hypoxia, hypoglycemia, ischemia, oxidative stress and the presence of free radicals and metabolic poisons. The release was generally markedly enhanced in most of the above conditions, the responses being greater in adults than in developing mice. The presence of dinitrophenol had the most pronounced effect at both ages, followed by NaCN- and free-radical-containing media and ischemia. Hypoxia did not affect release in the immature hippocampus. Under most conditions K+ stimulation (50 mM) was still able markedly to enhance D-aspartate release. This potentiation under cell-damaging conditions in both adult and developing hippocampus signifies that increased L-glutamate release contributes to excitotoxicity and subsequent cell death. The mechanisms of ischemia-induced release of D-aspartate were analyzed in the adult hippocampus using ion channel inhibitors and modified superfusion media. The induced release proved to be partly Ca2+-dependent and partly Ca2+-independent. The results obtained with Na+ omission and homo- and heteroexchange with D-aspartate and L-glutamate demonstrated that a part of the release in normoxia and ischemia is mediated by the reversal of Na+-dependent glutamate transporters. The Na+ channel blockers amiloride and riluzole reduced the ischemia-induced release, also indicating the involvement of Na+ channels. In addition to this, the enhanced release of D-aspartate may comprise a swelling-induced component through chloride channels.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...