Library

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 296 (1982), S. 232-235 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Accurate epicentre and focal depth determination for large and small earthquakes of the sequence exist for the period after 3 July 1978 when the first network of portable stations was put in operation in the epicentral region by D. Carver and R. Henrisey of the US Geological Survey. Two other such ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 149 (1997), S. 173-217 
    ISSN: 1420-9136
    Keywords: Time-dependent seismicity ; seismogenic region ; circum-Pacific convergent belt
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Investigation of the time-dependent seismicity in 274 seismogenic regions of the entire continental fracture system indicates that strong shallow earthquakes in each region exhibit short as well as intermediate term time clustering (duration extending to several years) which follow a power-law time distribution. Mainshocks, however (interevent times of the order of decades), show a quasiperiodic behaviour and follow the ‘regional time and magnitude predictable seismicity model’. This model is expressed by the following formulas $$\begin{gathered} \log T_t = 0.19 M_{\min } + 0.33 M_p - 0.39 \log m_0 + q \hfill \\ M_f = 0.73 M_{\min } - 0.28 M_p + 0.40 \log m_0 + m \hfill \\ \end{gathered} $$ which relate the interevent time,T t (in years), and the surface wave magnitude,M f , of the following mainshock: with the magnitude,M min, of the smallest mainshock considered, the magnitude,M p , of the preceded mainshock and the moment rate,m 0 (in dyn.cm.yr−1), in a seismogenic region. The values of the parametersq andm vary from area to area. The basic properties of this model are described and problems related to its physical significance are discussed. The first of these relations, in combination with the hypothesis that the ratioT/T t , whereT is the observed interevent time, follows a lognormal distribution, has been used to calculate the probability for the occurrence of the next very large mainshock (M s ≥7.0) during the decade 1993–2002 in each of the 141 seismogenic regions in which the circum-Pacific convergent belt has been separated. The second of these relations has been used to estimate the magnitude of the expected mainshock in each of the regions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 154 (1999), S. 101-119 
    ISSN: 1420-9136
    Keywords: Key words: Seismicity, b value, China.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract —The seismicity in the territory of China, a seismotectonically complicated region, has been examined by using three complete samples of earthquakes which occurred during the last two centuries (1800–1995). The b value of the Gutenberg-Richter relation was estimated by using this data sample. Taking into account the fact that the b value is spatially more stable than the a value, the b values were calculated at the nodes of a normal grid superposing on the entire area studied, and their distribution was examined. The results showed that the b value increases smoothly from 0.4 in inner-Mongolia to 0.8 in the east, south and southwest of China with higher values (b〉0.8) in the Taiwan region. Furthermore, keeping fixed the obtained b values, the a value distribution was also examined. In order to display more detailed information about the seismicity, smaller cell surface (10,000 km2) for the calculation of the a values was chosen. The mean return periods for different cutoff magnitudes were also calculated for each of these small cells. It was observed that the mean return periods are the shortest ones in China, which are 10 and 50 years for the magnitude larger than or equal to 6.0 and 7.0, respectively.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 157 (2000), S. 765-783 
    ISSN: 1420-9136
    Keywords: Key Words: Local magnitudes, south Balkan area, b-value.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract —A homogeneous earthquake catalog spanning 1964–1995 for the southern Balkan area is presented, by expressing the size of the earthquakes in a unified local magnitude scale. The strategy followed to produce this catalog is also presented. Local magnitudes calculated by six Balkan seismological centers (ATH, THE, ISK, TIR, TTG, SKO) have been used in order to obtain relations between the estimated M L values from the Greek seismological centers (ATH and THE) and the remaining four Balkan stations. Since it was found that local magnitudes estimated by ATH and THE are almost identical, they have been used as one data set so as to correlate with the data of each one of the remaining four seismological stations. Based on the proposed relations, a unified local magnitude, M LGR, is given for each earthquake of the regional catalog. A published scaling relation between the M L values from ATH and THE networks and the corresponding seismic moment magnitude, M w , was used in combination with the above relations, in order to enable the conversion of any M L value from any station into M w . The catalog completeness has been checked and the b-value has been calculated for the complete data sample.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Natural hazards 4 (1991), S. 161-170 
    ISSN: 1573-0840
    Keywords: Tsunami ; tsunami earthquake ; earthquake mechanism ; tsunamigenic zone ; Greece ; eastern Mediterranean
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geography , Geosciences
    Notes: Abstract The major earthquake-induced tsunamis reliable known to have occurred in and near Greece since antiquity are considered in the light of the recently obtained reliable data on the mechanisms and focal depths of the earthquakes occurring here. (The earthquake data concern the major shocks of the period 1962–1986.) First, concise information is given on the most devastating tsunamis. Then the relation between the (estimated) maximum tsunami intensity and the earthquake parameters (mechanism and focal depth) is examined. It is revealed that the most devastating tsunamis took place in areas (such as the western part of the Corinthiakos Gulf, the Maliakos Gulf, and the southern Aegean Sea) where earthquakes are due to shallow normal faulting. Other major tsunamis were nucleated along the convex side of the Hellenic arc, characterized by shallow thrust earthquakes. It is probably somewhere there (most likely south of Crete) that the region's largest known tsunami occurred in AD 365, claiming many lives and causing extensive devastation in the entire eastern Mediterranean. Such big tsunamis seem to have a return period of well over 1000 years and can be generated by large shallow earthquakes associated with thrust faulting beneath the Hellenic trench, where the African plate subduces under the Euroasian plate. Lesser tsunamis are known in the northernmost part of the Aegean Sea and in the Sea of Marmara, where strike-slip faulting is observed. Finally, an attempt is made to combine the tsunami and earthquake data into a map of the region's main tsunamigenic zones (areas of the sea bed believed responsible for past tsunamis and expected to nucleate tsunamis in the future).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Natural hazards 7 (1993), S. 211-218 
    ISSN: 1573-0840
    Keywords: Time predictable model ; Benioff zone ; Aegean Sea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geography , Geosciences
    Notes: Abstract Repeat times of strong intermediate depth (60 km ≤h ≤ 180 km) earthquakes have been determined by the use of instrumental and historical data for six seismogenic sources in the Benioff zone of the southern Aegean area. For four of these sources, at least two interevent times (three mainshocks) are available for each source. By using the repeat times for these four sources, the following relation has been determined: logT t = 0.20M min + 0.19M p +a, whereT t is the repeat time (in years),M min the surface wave magnitude of the smallest earthquake considered,M p the magnitude of the preceding mainshock and ‘a’ parameter which varies from source to source. A multilinear correlation coefficient equal to 0.91 was determined for this relation, which indicates that the time predictable model holds to a satisfactory degree for the strong mainshocks of intermediate focal depth in the southern Aegean. By assuming that the ratioT/T t, whereT is the observed andT t the calculated repeat time, follows a lognormal distribution, the conditional probabilities for the occurrence of strong (M s ≥ 6.5) and very strong (M s ≥ 7.5) earthquakes during the period 1991–2001 in these four seismogenic sources have been calculated. These probabilities are very high (P 〉 0.9) for the strong and high (P 〉 0.5) for the very strong intermediate depth earthquakes which occur in the three sources of the shallower (h 〈 100 km) part of the Benioff zone where coupling occurs between the front parts of the Mediterranean lithosphere (downgoing) and the Aegean lithosphere.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-0840
    Keywords: Seismic hazard ; macroseismic intensity ; seismic zonation ; ‘mean value’ method ; Cornell's method ; Greece
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geography , Geosciences
    Notes: Abstract Historical and present century instrumental data have been used to determine seismic hazard in 35 sites of Greece by the application of Cornell's method (Cornell, 1968) and the ‘mean value’ method. The macroseismic intensity has been considered as a measure of seismic hazard. Comparison of the results of the two methods showed that, in general, the ‘mean value’ method gives higher values, particularly for low probabilities of exceedance. In addition, for some sites, the differences of the expected intensities resulting from the two methods, indicate that finer tuning of the seismogenic souce model is required, or suggest time dependence. Although each one of these methods has its own merits, the method based on seismic zonation (Cornell's method) has several advantages and must be preferred when an accurate zonation is possible by the use of macroseismic and instrumental seismic data, together with geological and geomorphological information. However, reliable estimates of seismic hazard at a particular site require work on a microzoning scale, incorporating historical, archaeological, and recent geological data.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 315 (1985), S. 212-214 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] According to the barrier model, segmented ruptures could occur in a seismic fault, that is, slip could occur in cracks during the fault rupture process, while the region between cracks remains unbroken after the rupture. A rupture front may be stopped by a barrier, but elastic waves generated by ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 122 (1984), S. 25-35 
    ISSN: 1420-9136
    Keywords: Fault plane solution ; epicenter migration ; barrier
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Focal properties of the Monte Negro earthquake (15 April 1979,M=7.1) and its seismic sequence (foreshocks and aftershocks), which occurred near the southwestern coast of Yugoslavia, are investigated. Fault plane solutions of the main shock and its largest aftershock (24 May 1979,M=6.3) and the spatial distribution of the shocks of this sequence show that the seismic fault strikes about southeast-northwest (parallel to the coast) and dips northeast (towards the continent). It is a strike-slip left-lateral fault with a considerable thrust component. Its length is 95 km and its width 12 km. An aseismic belt, which separated the aftershock foci into two groups (the northwestern and southeastern), is interpreted as a section of the fault that slipped smoothly during the main shock. The aftershock foci were barriers where stress had been induced. One of these barriers broke later and produced the largest aftershock of 24 May.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...