Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (1)
  • 2014  (1)
Years
  • 2010-2014  (1)
Year
Language
  • 1
    Publication Date: 2020-08-05
    Description: We consider a stationary discrete-time linear process that can be observed by a finite number of sensors. The experimental design for the observations consists of an allocation of available resources to these sensors. We formalize the problem of selecting a design that maximizes the information matrix of the steady-state of the Kalman filter, with respect to a standard optimality criterion, such as $D-$ or $A-$optimality. This problem generalizes the optimal experimental design problem for a linear regression model with a finite design space and uncorrelated errors. Finally, we show that under natural assumptions, a steady-state optimal design can be computed by semidefinite programming.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...