Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (1)
Material
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Berkeley, Calif. : Berkeley Electronic Press (now: De Gruyter)
    International journal of emerging electric power systems 8.2007, 3, art5 
    ISSN: 1553-779X
    Source: Berkeley Electronic Press Academic Journals
    Topics: Electrical Engineering, Measurement and Control Technology
    Notes: This paper presents the steady-state and transient behavior of a single-phase self-excited induction generator (SEIG) using a three-phase machine with one shunt and one series excitation capacitors for resistive and inductive loads. The generation scheme consists of one three-phase delta connected induction machine and two capacitors - one connected in parallel with one winding and the other in series with a single-phase load. The dynamic model of the system has been developed as a hybrid model considering the stator phase currents in abc reference frame and the rotor currents in stationary d-q axes reference frame as state variables. The simulated and experimental results are presented for different dynamic conditions such as initiation of self-excitation, load perturbation and short-circuit. The simulated results of the steady-state analysis have been compared with the transient and experimental results and a close agreement between them indicates the accuracy and effectiveness of the approach.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...