Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2013
    Keywords: Ca2+ microelectrodes cADP-ribose Calcium Dantrolene Heparin Malignant hyperthermia Ruthenium red Ryanodine Skeletal muscle
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract. Malignant hyperthermia (MH) is associated with abnormal regulation of intracellular calcium in skeletal muscle fibers. Cyclic adenosine diphosphate-ribose (cADPR) is an endogenous metabolite of β-NAD+ that induces Ca2+ release from intracellular stores in many tissues. Microinjection of cADPR (0.5 or 1 µM) increased the intracellular resting Ca2+ concentration ([Ca2+]i) in intact swine skeletal muscle in a dose-dependent manner. However, the increase in [Ca2+]i was greater in malignant-hyperthermia-susceptible (MHS) fibers than in non-susceptible (MHN) fibers. Incubation of muscle fibers in low external Ca2+ solution or in the presence of L-type Ca2+ channel entry blockers, or intracellular microinjection of heparin or ruthenium red did not modify the effect of cADPR on [Ca2+]i. Dantrolene (50 µM), a known inhibitor of intracellular Ca2+ release, decreased resting [Ca2+]i and prevented the cADPR-induced increase in [Ca2+]i. These results provide evidence: (1) for the existence of Ca2+ release mechanisms occurring via non-ryanodine or inositol 1,4,5-trisphosphate (InsP 3) receptor mechanisms; (2) that MHS skeletal muscles exhibit a higher responsiveness to cADP-ribose-induced release of Ca2+ and (3) that the ability of dantrolene to block cADP-ribose-induced release of Ca2+ could be related to its pharmacologic effect on resting [Ca2+]i.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...