Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1433-4909
    Keywords: Key words Psychrophilic bacterium ; Vibrio ; NH4+ transport system ; 14CH3NH3+ uptake ; Nitrogen source for growth
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract NH4 + transport system of a psychrophilic marine bacterium Vibrio sp. strain ABE-1 (Vibrio ABE-1) was examined by measuring the uptake of [14C]methylammonium ion (14CH3NH3 +) into the intact cells. 14CH3NH3 + uptake was detected in cells grown in medium containing glutamate as the sole nitrogen source, but not in those grown in medium containing NH4Cl instead of glutamate. Vibrio ABE-1 did not utilize CH3NH3 + as a carbon or nitrogen source. NH4Cl and nonradiolabeled CH3NH3 + completely inhibited 14CH3NH3 + uptake. These results indicate that 14CH3NH3 + uptake in this bacterium is mediated via an NH4 + transport system and not by a specific carrier for CH3NH3 +. The respiratory substrate succinate was required to drive 14CH3NH3 + uptake and the uptake was completely inhibited by KCN, indicating that the uptake was energy dependent. The electrochemical potentials of H+ and/or Na+ across membranes were suggested to be the driving forces for the transport system because the ionophores carbonylcyanide m-chlorophenylhydrazone and monensin strongly inhibited uptake activities at pH 6.5 and 8.5, respectively. Furthermore, KCl activated 14CH3NH3 + uptake. The 14CH3NH3 + uptake activity of Vibrio ABE-1 was markedly high at temperatures between 0° and 15°C, and the apparent K m value for CH3NH3 + of the uptake did not change significantly over the temperature range from 0° to 25°C. Thus, the NH4 + transport system of this bacterium was highly active at low temperatures.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...